Concept explainers
(a)
Interpretation:
The pressure
Concept Introduction:
The conversion of one unit into another can be done by a proper conversion factor. Conversion factors are the ratios that relate the two different units of a quantity. It is also known as dimensional analysis or factor label method.
In the unit conversion problems, the given information is multiplied by the conversion factors to obtain the desired information. The unit conversion can be done as follows:
(b)
Interpretation:
The pressure
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
The pressure
Concept Introduction:
Refer to part (a).
(d)
Interpretation:
The pressure
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
CHEM PRINCIPLES LL W/ACHIEVE ONE-SEM
- Given that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardWhat possible uses exist for the natural gas liquids that are removed from natural gas during its processing?arrow_forwardA flask contains a mixture of neon (Ne), krypton (Kr), and radon (Rn) gases. Compare (a) the average kinetic energies of the three types of atoms and (b) the root-mean-square speeds. (Hint: Appendix D shows the molar mass (in g>mol) of each element under the chemical symbol for that element.)arrow_forward
- Jj.200.arrow_forwardThe vapor pressure of mercury at 20 oC is 1.7 x 10-6 atm. Your lab partner breaks a mercury thermometer and spills most of the mercury onto the floor. The dimensions of the laboratory are 16.0 m x 8.0 m x 3.0 m (l x w x h). At 20 oC, calculate the mass (in grams) of the mercury vapor in the room. Determine if the concentration of mercury vapor exceeds air quality regulations of 5.0 x 10-2 mg/m3. How would you clean up this spell?arrow_forwardA sample of 3.73 mol of argon is confined at low pressure in a volume at a temperature of 61 C. Describe quantitatively the effects of each of the following changes on the pressure, the average kinetic energy per molecule in the gas, and the root-mean-square speed. (a) The temperature is increased to 177 °C. (b) The volume is tripled. (c) The amount of argon is decreased to 1.96 mol. Give each answer as a decimal factor of the form: new value = factor old value. A factor of 1 means no change. Change KEavg Urms (а) (b) (c)arrow_forward
- A student experimentally determines the gas law constant, R, by reacting a small piece of magnesium with excess hydrochloric acid and then collecting the hydrogen gas over water in a eudiometer. Based on experimentally collected data, the student calculates R to equal L'atm 0.0832 mol·K L'atm Ideal gas law constant from literature: 0.08206 mol·K (a) Determine the percent error for the student's R-value. Percent error =|1.389 (b) For the statements below, identify the possible source(s) of error for this student's trial. The student uses the barometric pressure for the lab to calculate R. The student does not equilibrate the water levels within the eudiometer and the beaker at the end of the reaction. The water level in the eudiometer is 1-inch above the water level in the beaker. The student does not clean the zinc metal with sand paper. The student notices a large air bubble in the eudiometer after collecting the hydrogen gas, but does not dislodge it.arrow_forwardIn 1897 the Swedish explorer Andree tried to reach the North Pole in a balloon. The balloon was filled with hydrogen gas. The hydrogen gas was prepared from iron splints and diluted sulfuric acid. The reaction is Fe(a) + H,S0, (ag) + PeSO(og) + H;(s) The volume of the balloon was 4800 m and the loss of hydrogen gas during filling was estimated at 20% What mass of iron splints and 98 (by mas) H,S0, were nooded to enre the complete filling of the balloon? Assume a temperature of oC, a presaure of 10 atm during filling nd 100 yield. Mass of Fe Mass of HaS0, -arrow_forwardA sample of volume 258 cm3has a mass of 2.71 kg.(a) Is the material gaseous or condensed?(b) If the molar mass of the material is 108 g mol-1 , calculate its molar volume.arrow_forward
- A quantity of N2(g) gas occupies a volume of 1.0 L at 300 K and 1.0 atm. The gas expands to a volume of 3.0 L as the result of a change in both temperature and pressure. Find the density of the gas (in g·L–1) under these new conditions.arrow_forwardThe van der Waals constants for HCl are a = 3.67 atm·liter2·mole–2, and b = 40.8 cc·mole–1. Find the critical constants of this substance.arrow_forwardA 6.53 g sample of mixture of magnesium carbonate and calcium carbonate is treated with excess hydrochloric acid. The resulting reaction produces 1.71 L of carbon dioxide gas @28.0 degrees C and 735 torr pressure.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning