Organic Chemistry: Structure and Function
Organic Chemistry: Structure and Function
8th Edition
ISBN: 9781319079451
Author: K. Peter C. Vollhardt, Neil E. Schore
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 19P

(a)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of HF should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(b)

Interpretation Introduction

Interpretation: The value of ΔH° involved in the formation of HCl should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(c)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of HBr should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(d)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of HI should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(e)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CF and HF should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(f)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CCl and HCl should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(g)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CBr and HBr should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(h)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CI and HI should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

Blurred answer
Students have asked these similar questions
How many chiral carbons are in the molecule? OH F CI Br
A mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <
How many chiral carbons are in the molecule? F
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License