Heat and Mass Transfer: Fundamentals and Applications
6th Edition
ISBN: 9781260440058
Author: CENGEL, Yunus
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 182P
Determine the summer and winter R-values. in m2 . °C/W, of a masonry wall that consists of 1 00-nun face bricks, 13 mm of cement mortar. 100-nun lightweight concrete block. 40-nun airspace, and 20-mm plasterboard.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
On a winters day the outside temperature of a 15 inch thick concrete wall is -25F, the wall is 16 ft long and 10 ft high. How manu BTU are required to keep the inside of the wall at 75F? Assume walls thermal conductivity is 0.8BTU/h ft F.
Show detailed solutions
Q1) A 6 m wide 2.8 m high wall is constructed of one layer of common brick (k =
0. 72 W/m. °C) of thickness 20 cm, one inside layer of light-weight plaster (k =
0.36 W/m. °C) of thickness 1 cm, and one outside layer of cement based covering (k =
1.4 W/m. K) of thickness 2 cm. The inner surface of the wall is maintained at 23 °C while the
outer surface is exposed to outdoors at 8 °C with a combined convection and radiation heat
transfer coefficient of 17 W/m2.°C. It is desired to insulate the wall in order to decrease the
heat loss by 75 %. For the same inner surface temperature, determine the thickness of
insulation and the outer surface temperature if the wall is insulated with polyurethane foam
(k = 0.025 W/m.°C). Use thermal resistance network.
1) A wall section composed from the outside to inside, of concrete brick 100mm thick, an air space of
50mm, two layers of fiberglass insulation 38mm thick, concrete block 150mm thick and air space of
19mm and a gypsum board of 13mm. The exterior conditions are -20C and RH=90% while the interior
conditions are 23C and RH=40%. The surface temperature from the outside to inside are shown in the
figure. The permeances are:
Still Air: µ = 175 ng/pa.s.m
Fiber glass: M=2560 ng/pa.s.m?
Concrete block: M= 200 ng/pa.s.m?
Gypsum board: M= 2000 ng/pa.s.m?
Concrete brick: µ = 4.55 ng/pa.s.m
Determine if there is a risk of condensation, and if there is, what is the condensation rate?
What would happen if a vapor barrier (M=0.2 ng/pa.s.m²) was installed on the warm side of the
insulation (Surface 4).
21с 19C 16 С
12C
-10
-15C
-18C
-19C
Gyp
Air
Concrete
Fiber
Fiber
Air
Concrete
Outdoor
Indoor
sum
block
Glass
Glass
brick
230
19
50 mm
-20C
13
150 mm
38 mm | 38 mm
100 mm
RH=90%
RH=40%
mm
mm
Surf. 1
Surf.…
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 3 - Consider heat conduction through a wall of...Ch. 3 - Consider heat conduction through a plane wall....Ch. 3 - What does the thermal resistance of a medium...Ch. 3 - Can we defme the convection resistance for a unit...Ch. 3 - Consider steady heat transfer through the wall of...Ch. 3 - How is the combined heat transfer coefficient...Ch. 3 - Why are the convection and the radiation...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Someone comments that a microwave oven can be...Ch. 3 - Consider two cold canned drinks, one wrapped in a...
Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 37EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 39EPCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 48CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 50PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 52PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - Prob. 55PCh. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 66EPCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 74EPCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 85PCh. 3 - Prob. 86PCh. 3 - Prob. 87EPCh. 3 - Prob. 88EPCh. 3 - Prob. 89EPCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93EPCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 105CPCh. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 111PCh. 3 - Prob. 112PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 114CPCh. 3 - Prob. 115CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 127PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133EPCh. 3 - Prob. 134EPCh. 3 - Prob. 135PCh. 3 - Prob. 136PCh. 3 - Prob. 137PCh. 3 - Prob. 138PCh. 3 - Prob. 139PCh. 3 - Prob. 140PCh. 3 - Prob. 141PCh. 3 - Prob. 142PCh. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 150PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 153PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 155PCh. 3 - Prob. 156PCh. 3 - Prob. 157PCh. 3 - Prob. 158EPCh. 3 - Prob. 159PCh. 3 - Prob. 160PCh. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 166PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 170CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - Prob. 175PCh. 3 - Prob. 176PCh. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 181EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 185PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - Prob. 193PCh. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - Prob. 196PCh. 3 - Prob. 197PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 199PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 206PCh. 3 - Prob. 207PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 210PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 212PCh. 3 - Prob. 213PCh. 3 - Prob. 214PCh. 3 - Prob. 215PCh. 3 - Prob. 216PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 218PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 220PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 228PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 231PCh. 3 - Prob. 232PCh. 3 - Prob. 233PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 235PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 237PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 243PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Using Table 1.4 as a guide, prepare a similar table showing the orders of magnitude of the thermal resistances of a unit area for convection between a surface and various fluids.arrow_forward1.79 Consider the cooling of (a) a personal computer with a separate CPU and (b) a laptop computer. The reliable functioning of these machines depends on their effective cooling. Identify and briefly explain all modes of heat transfer involved in the cooling process.arrow_forwardDiscuss the modes of heat transfer that determine the equilibrium temperature of the space shuttle Endeavour when it is in orbit. What happens when it reenters the earths atmosphere?arrow_forward
- 4) A horizontal cm in diameter pipe 6 m long and 12.5 is maintained at a temperature of 150-C in a large room where the air is 20°C and 1 atm. The walls of the room are at 38.C. Assume that €=0.7 for the pipe. How much heat is lost by the pipe through both convection and radiation? 1:44 PMarrow_forwardWhat is the total heat loss through a triple glazing (U-value: 1.3) window with an area of 2m2 on a day when the outdoor and indoor temperatures are 5 C and 20 C, respectively?arrow_forwardA 2m^2 wall of 1010steel is 8 mm thick. If the outside of the wall is100 °C, andyou measure aheat flux of 80 kW/m2coming off the wall, what is the temperature of the insideof thewall?arrow_forward
- I need the answer as soon as possiblearrow_forwardA food product with 82% moisture content is being frozen. Estimate the specific heat of the product at -8°C when 82% of the water is in a frozen state. The specific heat of dry product solid is 2.5 kJ/(kg °C). Assume specific heat of water at -10°C is similar to specific heat of water at 0°C.arrow_forwardQuestion:- A cylindrical steel tank with a diameter of 3 m and height of 4.4 m is used to store chilled water (at 9.3 °C) as part of an air conditioning system for a building. The heat transfer (convection) co-efficient for the surface of the tank in contact with the water in this application is 15 W/(m2.K). Given the surface temperature of the metal tank is 40 °C. At what rate must heat energy be removed from the water just to maintain its temperature constant at 9.3 °C ? Assume the tank is an enclosed cylinder and that the tank is always full. Note - the thickness of the tank is not relevant to this problem. Work in base SI units.arrow_forward
- Solve correctly please, should match with given ans.arrow_forwardThe wall of a furnace comprises three layers as shown in the figuie. The first layer is tery (whose maximum allowable temperature is 1400°C) while the second laver is Tracto:y Chose maximum allowable temperature is 1093°C). The third layer is a plate of 6 35 od thermal contact. Steet plare To 6.35x3 45A 1370 C Concerntiation veluciy 37.8 C mass Siynes Figure. Layers in a composite furnace wall. e temperature To on the inside of the refractory is 1370°C, while the temperature T; on the side of the steel plate is 37.8° The heat loss through the furnace HnIlisexpectet tobearrow_forwardplz answer this ASAP,thx One surface of a copper plate that is 3 cm thick has a constant temperature of 400 ° C while the temperature of the other surface is kept constant at 100 ° C. Describe the temperature profile and how much heat is transferred across the plate ?, k copper = 380 watts/m.k with a cross -sectional area of 4 cm².arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license