The human body is adaptable to extreme climatic conditions and keeps the body core and skin temperatures within the comfort zone by regulating the metabolic heat generation rate. For example. in extreme cold conditions, the human body will maintain the body temperature by increasing metabolic heat generation, while in very hot conditions, the body will sweat and release heat. To understand this effect of ambient conditions on the human body, repeat Example 3-14 in the text and consider a case where climatic conditions change from -20°C and 20°C. For this change in ambient air temperature, calculate the metabolic heat generation rate required with skin/fat thicknesses of 0.0075, 0.005, and 0.0025 m to maintain the skin temperature at page 238 34°C. Assume that in spite of the change in ambient air temperature. the perspiration rate remains constant at 0.0005 s − 1 . Plot a graph of metabolic heat generation rate against the ambient temperature with temperature increments of 5°C.
The human body is adaptable to extreme climatic conditions and keeps the body core and skin temperatures within the comfort zone by regulating the metabolic heat generation rate. For example. in extreme cold conditions, the human body will maintain the body temperature by increasing metabolic heat generation, while in very hot conditions, the body will sweat and release heat. To understand this effect of ambient conditions on the human body, repeat Example 3-14 in the text and consider a case where climatic conditions change from -20°C and 20°C. For this change in ambient air temperature, calculate the metabolic heat generation rate required with skin/fat thicknesses of 0.0075, 0.005, and 0.0025 m to maintain the skin temperature at page 238 34°C. Assume that in spite of the change in ambient air temperature. the perspiration rate remains constant at 0.0005 s − 1 . Plot a graph of metabolic heat generation rate against the ambient temperature with temperature increments of 5°C.
Solution Summary: The author analyzes the metabolic heat generation rate against the ambient temperature with temperature increment of 5°C. A human with lesser skin layer thickness will have higher metabolism to maintain interface temperature.
The human body is adaptable to extreme climatic conditions and keeps the body core and skin temperatures within the comfort zone by regulating the metabolic heat generation rate. For example. in extreme cold conditions, the human body will maintain the body temperature by increasing metabolic heat generation, while in very hot conditions, the body will sweat and release heat. To understand this effect of ambient conditions on the human body, repeat Example 3-14 in the text and consider a case where climatic conditions change from -20°C and 20°C. For this change in ambient air temperature, calculate the metabolic heat generation rate required with skin/fat thicknesses of 0.0075, 0.005, and 0.0025 m to maintain the skin temperature at page 238 34°C. Assume that in spite of the change in ambient air temperature. the perspiration rate remains constant at
0.0005
s
−
1
. Plot a graph of metabolic heat generation rate against the ambient temperature with temperature increments of 5°C.
1. Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The masses are 12
kg. 10 kg. 18 kg and 15 kg respectively and their radii of rotations are 40 mm, 50 mm, 60 mm and
30 mm. The angular position of the masses B, C and D are 60°, 135° and 270 from the mass A.
Find the magnitude and position of the balancing mass at a radius of 100 mm.
[Ans. 7.56 kg: 87 clockwise from A]
3. The structure in Figure 3 is loaded by a horizontal force P = 2.4 kN at C. The roller at E is
frictionless. Find the axial force N, the shear force V and the bending moment M at a section
just above the pin B in the member ABC and illustrate their directions on a sketch of the segment
AB.
B
P
D
A
65°
65°
E
all dimensions in meters
Figure 3
4. The distributed load in Figure 4 varies linearly from 3wo per unit length at A to wo per unit
length at B and the beam is built in at A. Find expressions for the shear force V and the bending
moment M as functions of x.
3W0
Wo
A
L
Figure 4
2
B
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.