Heat and Mass Transfer: Fundamentals and Applications
6th Edition
ISBN: 9781260440058
Author: CENGEL, Yunus
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 107CP
To determine
To validate: the claim that rate of heat transfer will increase when insulation is added.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Metal vapor pipe with an outer diameter of 30 mm has a surface temperature of 400 k and will be insulated with an insulation of 20 mm thickness and k = 0.08 w / m ^ 2.k. The pipe is exposed to air at 300 k and 30w / m ^ 2.k. has convection coefficient. calculate the critical radius and heat loss
Stainless steel pipes with a thermal conductivity of 17 W/ (m° C) are used to transport hot
oil. The temperature inside the tube is 130 ° C. The inner diameter of the pipe is 8 cm and
the thickness of the pipe wall is 2 cm. The pipe is then insulated with 4 cm thick insulation
with a thermal conductivity of 0.035 W / (m° C). The ambient temperature of the pipe is 25
° C. Calculate the temperature between the steel and the insulation if we assume a steady
state. A picture of the pipe can be seen below.
A 3 inch schedule 40 pipe is covered with two layers of
insulations. The inner layer (k1 = 0.050) is 2 inches thick and
the outer layer (k2 = 0.037) is 1(1/4) inches thick. Calculate
the heat loss, in Btu/hr per unit length, if the outer surface
temperature of the pipe is 670°F and the outer surface
temperature of the outer layer of insulation is 100°F.
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 3 - Consider heat conduction through a wall of...Ch. 3 - Consider heat conduction through a plane wall....Ch. 3 - What does the thermal resistance of a medium...Ch. 3 - Can we defme the convection resistance for a unit...Ch. 3 - Consider steady heat transfer through the wall of...Ch. 3 - How is the combined heat transfer coefficient...Ch. 3 - Why are the convection and the radiation...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Someone comments that a microwave oven can be...Ch. 3 - Consider two cold canned drinks, one wrapped in a...
Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 37EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 39EPCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 48CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 50PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 52PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - Prob. 55PCh. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 66EPCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 74EPCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 85PCh. 3 - Prob. 86PCh. 3 - Prob. 87EPCh. 3 - Prob. 88EPCh. 3 - Prob. 89EPCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93EPCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 105CPCh. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 111PCh. 3 - Prob. 112PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 114CPCh. 3 - Prob. 115CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 127PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133EPCh. 3 - Prob. 134EPCh. 3 - Prob. 135PCh. 3 - Prob. 136PCh. 3 - Prob. 137PCh. 3 - Prob. 138PCh. 3 - Prob. 139PCh. 3 - Prob. 140PCh. 3 - Prob. 141PCh. 3 - Prob. 142PCh. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 150PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 153PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 155PCh. 3 - Prob. 156PCh. 3 - Prob. 157PCh. 3 - Prob. 158EPCh. 3 - Prob. 159PCh. 3 - Prob. 160PCh. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 166PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 170CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - Prob. 175PCh. 3 - Prob. 176PCh. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 181EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 185PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - Prob. 193PCh. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - Prob. 196PCh. 3 - Prob. 197PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 199PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 206PCh. 3 - Prob. 207PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 210PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 212PCh. 3 - Prob. 213PCh. 3 - Prob. 214PCh. 3 - Prob. 215PCh. 3 - Prob. 216PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 218PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 220PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 228PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 231PCh. 3 - Prob. 232PCh. 3 - Prob. 233PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 235PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 237PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 243PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate the heat loss through a 3-in. thick insulation board that has an area of 2- ft² and a k-value of 0.25. Assume the average temperature difference across the material is 70°F. Q = 11.66-Btu/hr Q = 10.99-Btu/hr Q = 10.66-Btu/hr Q = 11.99-Btu/hr Hide hint for Question 1 Utilize the (Q = k*A*AT/thickness) equation.arrow_forwardA pipe 30 m long with an outer diameter of 75 mm is used to deliver steam at a rate of 1500 kg / hour. The steam pressure is 198.53 kPa entering the pipe with a quality of 98%. The pipe that needs to be insulated with a thermal conductivity of 0.2 W / (m K) so that the quality of the steam only decreases slightly to 95%. The temperature of the outer surface of the insulation is assumed to be 25 ° C. The conductive of the pipe material and the situation of no pressure drop in the pipe. A. Determine the enthalpy of incoming vapor = Answer kJ / kg. b. Determine the enthalpy of steam that comes out = Answer kJ / kg. c. Determine the change / loss of steam heat along the flow = Answer watt. d. Determine the minimum required insulation thickness = Answer cm.arrow_forwardA thick-walled tube of stainless steel (L = 0.50 m; k = 21.63 W/m-K) with an inside diameter of 0.0254 m and outside diameter of 0.0508 m, is covered with an insulation (∆x =0.0254 m) with k = 0.2423 W/m-K. If the inside wall temperature of the pipe is at 400 oC, calculate the temperature at the interface between the metal and the insulation (in oC) if the outside surface of the insulation is at 29.8 oC. 99 K in Pa.arrow_forward
- Question 1 Steam at 230°C is flowing through a steel pipe (k = 15W/m °C) whose inner and outer diameters are 90 mm and 100 mm, respectively, in an environment at 13°C. The pipe is insulated with 50-mm-thick fiberglass insulation (k = 0.040W/m °C). If the heat transfer coefficients on the inside and the outside of the pipe are 5 and 0.9 W/m2 °C, respectively, determine the rate of heat loss from the steam per meter length of the pipe. What is the error involved in neglecting the thermal resistance of the steel pipe in calculations?arrow_forwardI would like to ask for your expertise in this problem. Thank youarrow_forwardThe wall of a 5 m high cylinderical steel tank (ks= 20 W/mK) of inner diameter 1.5 m and 200 mm thick contains hot oil at 100 C. On the outside of the tank 12 mm of spray urethane insulation is added to stop the oil from cooling. If the worst outside temperature is -6 , (hi = 16 W/m^2 K) and (ho = 5 W/m^2 K) how much heat needs to be added to keep the tank at 100 C for pumping reasons and what are the overall heat transfer coefficients Uo and Ui?arrow_forward
- Calculate the heat loss through a 100-ft² wall with an inside temperature of 65°F and an outside temperature of 35°F. Assume the exterior wall is composed of 2- in. of material having a 'k' factor of 0.80, and 2-in. of insulation having a conductance of 0.16. RTotal = 8.75 & Q = 342-Btu/hr RTotal = 9.2 & Q = 399-Btu/hr RTotal = 8.75 & Q = 399-Btu/hr RTotal = 9.2 & Q = 342-Btu/hr Hide hint for Question 3 Utilize the (RTotal = 1/C + x1/k1) equation.arrow_forward(b) A hydrogen gas cylinder is situated in the cylinder cage. The cylinder wall is constructed from 15.5 mm carbon fiber (kcp = 0.75 W mK-¹). The outside of the cylinder is lagged with an inner 10 mm layer of ceramic insulation (kc = 0.08 W mK-¹) and an outer 80 mm layer of fiberglass insulation (kp = 0.15 W mK-¹). The temperature on the hydrogen gas is 150 °C and the temperature of the cylinder cage is 45 °C. Given that the walls of the cylinder can be assumed to be flat and neglecting the contribution of radiation, calculate: (i) the heat flux per square meter of the gas cylinder wall (ii) the temperature at the interface between the fibreglass and the ceramic insulation. 1.1arrow_forwardA silicon wafer with thickness of 925 µm is being heated with a uniform heat flux at the lower surface. The silicon wafer has a thermal conductivity that varies with temperature and can be expressed as k(T) = (a + bT + cT2) W/m·K, where a = 450, b = -1.29, and c = 0.00111. To avoid warping, the temperature difference across the wafer thickness cannot exceed 2°C. If the upper surface of the silicon wafer is at a uniform temperature of 600 K, determine the maximum allowable heat flux. (Round your answer up to 2 decimal places.)arrow_forward
- Calculate the overall heat transfer coefficients (based on inner and outer diameter) and the net heat loss from the pipe for a steel pipe covered with fiber glass insulation. The following data are given: ID of pipe = 2 cm; Thickness of pipe = 0.2 cm; Thickness of insulation = 2 cm; Heat Transfer Coefficient (inside) = 10 W/(m2-K); Heat Transfer Coefficient (outside) = 5 W/(m2-K); Conductivity of insulation = 0.05 W/(m-K); Conductivity of Steel = 46 W/(m-K); Inside fluid temperature = 200°C; Ambient Temperature = 30°C.arrow_forwardA 1-in Sch 40 stainless steel pipe with a thermal conductivity of 45 W/m-K can move 1,000 kg of saturated steam per hour at 150 °C. Refractory material 0.25 inches thick with a thermal conductivity of 0.025 W/m-K insulates the pipe. At a temperature of 25 °C, the pipe is exposed to the outside air. There is a 1135 W/m2 internal heat transfer coefficient.40 W/m2-K is the outside heat transfer coefficient, whereas -K. Suppose that only the radial direction is involved in steady-state heat transfer and that radiation effects are negligible. ✓ Determine how much heat is being lost through these pipes to the environment.a. 399.1 W/mb. 1525.0 W/mc. 618.4 W/md. 1128.7 W/me. none of the above √ How about the insulated pipe's surface temperature?a. 118.5 °Cb. None of the abovec. 101.5 °Cd. 216.3 °Ce. 292.2 °Carrow_forwarda flat wall is covered with a layer of insulation 1.0 in. thick whose thermal conductivity is 0.8 Btu/hr-ft- F. the temperature of the wall on the inside of the insulation is 600F. the wall loses heat to the environment by convection on the surface of the insulation. the average value of the convection heat transfer coefficient on the inslation surface is 950 Btu/hr-ft^2-F. compute the bulk temperature of the environment if the outer surface of the insulation does not exceed 105 F.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license