Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 29, Problem 64P
Maxwell’s equations in a dielectric resemble those in vacuum (Equations 29.6-29.9) but with ∈0 replaced by κ∈0, where κ is the dielectric constant introduced in Chapter 23. Show that the speed of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Maxwell's equations in a dielectric resemble those
in vacuum but with eo replaced by K €0, where is
the dielectric constant. We measure the speed of an
electromagnetic wave in a certain dielectric and
find u = .333 c. Determine the dielectric constant
Electromagnetic waves can propagate through a vacuum.
The speed of electromagnetic waves in a medium is always greater than the speed of light in vacuum.
Electromagnetic waves can exhibit both particle-like and wave-like properties.
The energy carried by an electromagnetic wave is directly proportional to its frequency.
The electromagnetic spectrum encompasses a wide range of wavelengths, from radio waves to gamma rays.
True or False ?
The electric field of an electromagnetic wave in a vacuum
is Ey = (23.0 V/m)cos(( 7.68 × 10³)x – wt),
where x is in m and t is in s.
You may want to review (Pages 889 - 892).
For help with math skills, you may want to review:
Rearrangement of Equations Involving Multiplication and
Division
For general problem-solving tips and strategies for this
topic, you may want to view a Video Tutor Solution of
Fields in a microwave oven.
rail d
What is the wave's frequency?
Express your answer with the appropriate units.
f= 0.062
Submit Previous Answers Request Answer
Part C
μA
X Incorrect; Try Again; 4 attempts remaining
B =
What is the wave's magnetic field amplitude?
Express your answer with the appropriate units.
Submit
Hz
ЦА
Value
Request Answer
?
Units
?
Chapter 29 Solutions
Essential University Physics (3rd Edition)
Ch. 29.2 - Would you expect to find a magnetic field between...Ch. 29.5 - Prob. 29.3GICh. 29.6 - Prob. 29.4GICh. 29.7 - Prob. 29.5GICh. 29.8 - Lasers 1 and 2 emit light of the same color, and...Ch. 29 - Why is Maxwells modification of Ampres law...Ch. 29 - Prob. 2FTDCh. 29 - Is there displacement current in an...Ch. 29 - Prob. 4FTDCh. 29 - Prob. 5FTD
Ch. 29 - When astronomers observe a supernova explosion in...Ch. 29 - Turning a TV antenna so its rods point vertically...Ch. 29 - The Sun emits about half of its...Ch. 29 - An LC circuit is made entirely from...Ch. 29 - Prob. 10FTDCh. 29 - The intensity of light drops as the inverse square...Ch. 29 - Electromagnetic waves dont readily penetrate...Ch. 29 - Prob. 13ECh. 29 - Prob. 14ECh. 29 - The fields of an electromagnetic wave are E = Ep...Ch. 29 - A radio waves electric field is given by the...Ch. 29 - A light-minute is the distance light travels in 1...Ch. 29 - Your intercontinental telephone call is carried by...Ch. 29 - An airplanes radar altimeter works by bouncing...Ch. 29 - Roughly how long does it take light to travel 1...Ch. 29 - If you speak via radio from Earth to an astronaut...Ch. 29 - What are the wavelengths of (a) a 100-MHz FM radio...Ch. 29 - A 60-Hz power line emits electromagnetic...Ch. 29 - Microwave ovens for consumers use operate at 2.45...Ch. 29 - Prob. 25ECh. 29 - Prob. 26ECh. 29 - Vertically polarized light passes through a...Ch. 29 - Prob. 28ECh. 29 - Prob. 29ECh. 29 - Estimate the peak electric field inside a 1.1-kW...Ch. 29 - Prob. 31ECh. 29 - Prob. 32ECh. 29 - Your university radio station has a 5.0-kW radio...Ch. 29 - Prob. 34PCh. 29 - Youre engineering a new cell phone, and youd like...Ch. 29 - Prob. 36PCh. 29 - The medical profession divides the ultraviolet...Ch. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - A polarizer blocks 75% of a polarized light beam....Ch. 29 - Prob. 41PCh. 29 - Unpolarized light of intensity S0 passes first...Ch. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - High microwave intensities can cause biological...Ch. 29 - Use the fact that sunlight intensity at Earths...Ch. 29 - A quasar 10 billion light-years from Earth appears...Ch. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Find the peak electric and magnetic fields 1.5 m...Ch. 29 - A typical fluorescent lamp is a little more than 1...Ch. 29 - Prob. 52PCh. 29 - A laser produces an average power of 7.0 W in a...Ch. 29 - Prob. 54PCh. 29 - A 65-kg astronaut is floating in empty space. If...Ch. 29 - Prob. 56PCh. 29 - A white dwarf star is approximately the size of...Ch. 29 - Use appropriate data from Appendix E to calculate...Ch. 29 - Prob. 59PCh. 29 - Prob. 60PCh. 29 - In a stack of polarizing sheets, each sheet has...Ch. 29 - Prob. 62PCh. 29 - Prob. 63PCh. 29 - Maxwells equations in a dielectric resemble those...Ch. 29 - Prob. 65PCh. 29 - Your roommates father is CEO of a coal company, so...Ch. 29 - The Voyager I spacecraft is now beyond the outer...Ch. 29 - Prob. 68PCh. 29 - Prob. 69PCh. 29 - The table below shows the intensity of the radio...Ch. 29 - If a sunlight-powered sailing spacecraft...Ch. 29 - Prob. 72PPCh. 29 - A sail capable of propelling a spacecraft to the...Ch. 29 - Prob. 74PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Draw a free body diagram to show how a diver gains angular momentum when leaving the diving board.
College Physics
If acceleration is proportional to the net force or is equal to net force.
Conceptual Physics (12th Edition)
2. Julie drives 100 mi to Grandmother’s house. On the way to Grandmother’s, Julie drives half the distance at 4...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Different materials, A, B, C, and D, rest on a table. a From greatest to least, rank them by how much they resi...
Conceptual Integrated Science
A friend says, “It makes no sense that Anna could turn on lights in her hands simultaneously in her frame but t...
Modern Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The electric field of an electromagnetic wave traveling in vacuum is described by the following wave function: E =(5.00V/m)cos[kx(6.00109s1)t+0.40] j where k is the wavenumber in rad/m, x is in m, t s in Find the following quantities: (a) amplitude (b) frequency (c) wavelength (d) the direction of the travel of the wave (e) the associated magnetic field wavearrow_forwardThe electric part of an electromagnetic wave is given by E(x, t) = 0.75 sin (0.30x t) V/m in SI units. a. What are the amplitudes Emax and Bmax? b. What are the angular wave number and the wavelength? c. What is the propagation velocity? d. What are the angular frequency, frequency, and period?arrow_forwardIf the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis, in what possible direction is the wave traveling?arrow_forward
- Consider an electromagnetic wave traveling in the positive y direction. The magnetic field associated with the wave at some location at some instant points in the negative x direction as shown in Figure OQ24.12. What is the direction of the electric field at this position and at this instant? (a) the positive x direction (b) the positive y direction (c) the positive z direction (d) the negative z direction (e) the negative y direction Figure OQ24.12arrow_forwardA typical microwave oven operates at a frequency of 2.45 GHz. What is the wavelength associated with the electromagnetic waves in the oven? (a) 8.20 m (b) 12.2 cm (c) 1.20 108 m (d) 8.20 109 m (e) none of those answersarrow_forwardMaxwell's equations predict that the speed of electromagnetic waves in free space is given by: 1 1 (μ₂€0) 2 μ0 €0 1 (140 €0)² (H0€0) 1 (Ho €0)arrow_forward
- The electric field intensity in the region 0 <.x < 5, 0arrow_forwardLasers can be constructed that produce an extremely high intensity electromagnetic wave for a brief time. These devices are called pulsed lasers and can be used to ignite nuclear fusion, for example. Consider a pulsed laser that produces an electromagnetic wave with a maximum electric field strength of 1.25×10^11 V/m for a duration of 1.00 ns. What energy does it deliver on a 1.00 mm^2 area? Give your answer in units of kilojoules.arrow_forwardThe intensity of solar radiation that falls on a detector on Earth is 1.00 kW/m². The detector is a square that measures 6.11 m on a side and the normal to its surface makes an angle of 30.0° with respect to the Sun's radiation. How long will it take for the detector to measure 436 kJ of energy? Sarrow_forwardThe image attached is a neat copy of a photo of an electricity meter for a domestic solar array. The display shows the energy we sold to the electricity company on a winter's day. Each box is 100 W high and 1 hr wide. At the radius of the earth's orbit, the intensity of sunlight is I=1.4 kW.m–2 . (This means that 1.4 kW.m–2 passes through 1 square metre at right angles to the sun's rays.) The solar array in the previous question consists of 10 panels, each with area A=1.6 m2 . Under optimal conditions - with the sun at right angles to the array and no clouds in the sky - the array produces Pout=2.3 kW . What is the efficiency of the array? Power out/power in = _____ %.arrow_forwardLasers can be constructed that produce an extremely high intensity electromagnetic wave for a brief time. These devices are called pulsed lasers and can be used to ignite nuclear fusion, for example. Consider a pulsed laser that produces an electromagnetic wave with a maximum electric field strength of 2.73 × 1011 V/m for a duration of 1.00 ns. What energy does it deliver on a 1.00 mm² area? Assume, for simplicity, that the sinusoidal electric field has the same amplitude (i.e., constant maximum electric field strength) throughout the duration of the pulse.arrow_forwardAn industrial laser is used to burn a hole through a piece of metal. The average intensity of the light is 1.4 x 10^9 W/m². What is the RMS value of the electric field in the electromagnetic wave emitted by the laser?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY