Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29.6, Problem 29.4GI
To determine
The relation between the frequency of gamma rays and visible light.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Gamma rays typically have frequencies above 10 exahertz (or >1019 Hz). What is the corresponding wavelength in units of picometers (pm) of a gamma ray with a 3 * 1019 Hz? (1 pm = 10-12 m)?
Gamma rays typically have frequencies above 10 exahertz (or 10^19 Hz). What is the corresponding
wavelength in units of picometers (pm) of a gamma ray with a 3*10^19 H? (1pm-10^-12m)
Accessibility: Good to go
Q Search
F6
F7
F8
8
F9
F10
F11
F12
PrtSc
5. The linear absorption coefficients for 2.0-MeV gamma rays are 4.9 m-1 in water and
52 m-1 in lead. What thickness of water (in mm) would give the same shielding for
such gamma rays as 10 mm of lead?
Chapter 29 Solutions
Essential University Physics (3rd Edition)
Ch. 29.2 - Would you expect to find a magnetic field between...Ch. 29.5 - Prob. 29.3GICh. 29.6 - Prob. 29.4GICh. 29.7 - Prob. 29.5GICh. 29.8 - Lasers 1 and 2 emit light of the same color, and...Ch. 29 - Why is Maxwells modification of Ampres law...Ch. 29 - Prob. 2FTDCh. 29 - Is there displacement current in an...Ch. 29 - Prob. 4FTDCh. 29 - Prob. 5FTD
Ch. 29 - When astronomers observe a supernova explosion in...Ch. 29 - Turning a TV antenna so its rods point vertically...Ch. 29 - The Sun emits about half of its...Ch. 29 - An LC circuit is made entirely from...Ch. 29 - Prob. 10FTDCh. 29 - The intensity of light drops as the inverse square...Ch. 29 - Electromagnetic waves dont readily penetrate...Ch. 29 - Prob. 13ECh. 29 - Prob. 14ECh. 29 - The fields of an electromagnetic wave are E = Ep...Ch. 29 - A radio waves electric field is given by the...Ch. 29 - A light-minute is the distance light travels in 1...Ch. 29 - Your intercontinental telephone call is carried by...Ch. 29 - An airplanes radar altimeter works by bouncing...Ch. 29 - Roughly how long does it take light to travel 1...Ch. 29 - If you speak via radio from Earth to an astronaut...Ch. 29 - What are the wavelengths of (a) a 100-MHz FM radio...Ch. 29 - A 60-Hz power line emits electromagnetic...Ch. 29 - Microwave ovens for consumers use operate at 2.45...Ch. 29 - Prob. 25ECh. 29 - Prob. 26ECh. 29 - Vertically polarized light passes through a...Ch. 29 - Prob. 28ECh. 29 - Prob. 29ECh. 29 - Estimate the peak electric field inside a 1.1-kW...Ch. 29 - Prob. 31ECh. 29 - Prob. 32ECh. 29 - Your university radio station has a 5.0-kW radio...Ch. 29 - Prob. 34PCh. 29 - Youre engineering a new cell phone, and youd like...Ch. 29 - Prob. 36PCh. 29 - The medical profession divides the ultraviolet...Ch. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - A polarizer blocks 75% of a polarized light beam....Ch. 29 - Prob. 41PCh. 29 - Unpolarized light of intensity S0 passes first...Ch. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - High microwave intensities can cause biological...Ch. 29 - Use the fact that sunlight intensity at Earths...Ch. 29 - A quasar 10 billion light-years from Earth appears...Ch. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Find the peak electric and magnetic fields 1.5 m...Ch. 29 - A typical fluorescent lamp is a little more than 1...Ch. 29 - Prob. 52PCh. 29 - A laser produces an average power of 7.0 W in a...Ch. 29 - Prob. 54PCh. 29 - A 65-kg astronaut is floating in empty space. If...Ch. 29 - Prob. 56PCh. 29 - A white dwarf star is approximately the size of...Ch. 29 - Use appropriate data from Appendix E to calculate...Ch. 29 - Prob. 59PCh. 29 - Prob. 60PCh. 29 - In a stack of polarizing sheets, each sheet has...Ch. 29 - Prob. 62PCh. 29 - Prob. 63PCh. 29 - Maxwells equations in a dielectric resemble those...Ch. 29 - Prob. 65PCh. 29 - Your roommates father is CEO of a coal company, so...Ch. 29 - The Voyager I spacecraft is now beyond the outer...Ch. 29 - Prob. 68PCh. 29 - Prob. 69PCh. 29 - The table below shows the intensity of the radio...Ch. 29 - If a sunlight-powered sailing spacecraft...Ch. 29 - Prob. 72PPCh. 29 - A sail capable of propelling a spacecraft to the...Ch. 29 - Prob. 74PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What happens to the intensity of gamma radiation when the distance between the Geiger Muller detector and the source is 4 times the original distancearrow_forwardWhat is the SI unit for radiation dose? What is its value in J/kg and rad?arrow_forwardProblem 1 Use the properties of Gamma functions to solve these expressions by hand. a program such as a T[ ] × [4] b C 3 — 92 xr 5 9 T[-2] × [2] Г xr 4 4arrow_forward
- The intensity of radioactivity depends on the distance of the recipient from the source of radiation and follows an inverse square law. Suppose an object receives 1230 millirem of radiation when it is 10 meters from the source, calculate the distance if the object is now exposed to 350 millirem.arrow_forwardB6arrow_forwardA radioactive source is producing 1.50 MeV gamma rays. If two detectors are placed 4.00 m and 7.00 m away respectively, what is the ratio of the measured intensities of the near detector over the far detector (I2/I1)? Do NOT include units in your answer answer to 2 decimal places.arrow_forward
- Gamma rays have longer wavelength than visible light. true or falsearrow_forward25. A radiograph made with an exposure of 12 mA per minute has a density of 0.8 in the area of interest. It is desired to increase the density to 2.0 in this area. By reference to a characteristic curve of the film, it is found that the difference in log e between a density of 0.8 and 2.0 is 0.76. The antilogarithm of log 0.76 is 5.8 (relative exposure factor). What must the new exposure time be to produce a radiograph with a density of 2.0, assuming the first exposure time was 1 minute?arrow_forwardCalculate the wavelength of a 0.652 MeV Gamma Rayarrow_forward
- A patient is exposed to 210 rad of gamma rays. What is the dose the patient receives in rem? Express your answer using two significant figures. Dose = Η ΜΕ ΑΣΦ Submit Request Answer 0 ? remarrow_forwardThe point source Co-60 emits gamma with energies of 1.17 MeV and 1.33 MeV. Each of these energies emits the same number of photon particles. At a certain location, the flux that is read is 5.7 x 109 photons/cm2.s, what is the intensity or energy flux with units of J/m^2.minarrow_forward2. Consider two gamma radioactive sources: S1 has activity 50 µCi (micro-Curie) and S2 has activity 25 µCi (micro-Curie). They are separated by 1 m. Assume that both sources are pointlike. s1 S2 1 m a) At which location along the dashed line passing by the two sources is the flux due to S1 equal to the flux due to S2 ? b) What is the gamma fluence in that location in a time interval of two minutes ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning