Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 29, Problem 56P
To determine
The power of beam and the comparison of the power with humanity’s total electric power generating capability.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A simple mass spectrometer may include an electron ionization (EI) source and magnetic sector mass analyzer. In this type of instrument, singly charged ions are produced and accelerated through the slit to the analyzer by
applying high potentials to accelerator plates. If an ion with mass 339 amu and charge z =
1 is accelerated by a potential of 6500 V, what is its kinetic energy (in J)?
Note: The following information may be useful for solving the two parts of this problem.
1 amu = 1.66 x 10-27
kg
Electronic charge, e =
1.602 x 10-19 C
1J = 1 kg m/s²
1 V = 1 J/C
Submit Answer
What is the velocity of the ion?
Suppose an electron (q= -e = -1.6 x 10^-19 C, m = 9.1 x 10^-31 kg) is accelerated from rest through a potential difference of Vab = +5000 V. Solve for the final speed of the electron. Express numerical answer in two significant figures. Use the template in the attached photo to solve for the problem.
An evacuated tube uses an accelerating voltage of 55 kV to accelerate electrons to hit a copper plate and produce X-rays. Non-relativistically, what
would be the maximum speed (in m/s) of these electrons?
Chapter 29 Solutions
Essential University Physics (3rd Edition)
Ch. 29.2 - Would you expect to find a magnetic field between...Ch. 29.5 - Prob. 29.3GICh. 29.6 - Prob. 29.4GICh. 29.7 - Prob. 29.5GICh. 29.8 - Lasers 1 and 2 emit light of the same color, and...Ch. 29 - Why is Maxwells modification of Ampres law...Ch. 29 - Prob. 2FTDCh. 29 - Is there displacement current in an...Ch. 29 - Prob. 4FTDCh. 29 - Prob. 5FTD
Ch. 29 - When astronomers observe a supernova explosion in...Ch. 29 - Turning a TV antenna so its rods point vertically...Ch. 29 - The Sun emits about half of its...Ch. 29 - An LC circuit is made entirely from...Ch. 29 - Prob. 10FTDCh. 29 - The intensity of light drops as the inverse square...Ch. 29 - Electromagnetic waves dont readily penetrate...Ch. 29 - Prob. 13ECh. 29 - Prob. 14ECh. 29 - The fields of an electromagnetic wave are E = Ep...Ch. 29 - A radio waves electric field is given by the...Ch. 29 - A light-minute is the distance light travels in 1...Ch. 29 - Your intercontinental telephone call is carried by...Ch. 29 - An airplanes radar altimeter works by bouncing...Ch. 29 - Roughly how long does it take light to travel 1...Ch. 29 - If you speak via radio from Earth to an astronaut...Ch. 29 - What are the wavelengths of (a) a 100-MHz FM radio...Ch. 29 - A 60-Hz power line emits electromagnetic...Ch. 29 - Microwave ovens for consumers use operate at 2.45...Ch. 29 - Prob. 25ECh. 29 - Prob. 26ECh. 29 - Vertically polarized light passes through a...Ch. 29 - Prob. 28ECh. 29 - Prob. 29ECh. 29 - Estimate the peak electric field inside a 1.1-kW...Ch. 29 - Prob. 31ECh. 29 - Prob. 32ECh. 29 - Your university radio station has a 5.0-kW radio...Ch. 29 - Prob. 34PCh. 29 - Youre engineering a new cell phone, and youd like...Ch. 29 - Prob. 36PCh. 29 - The medical profession divides the ultraviolet...Ch. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - A polarizer blocks 75% of a polarized light beam....Ch. 29 - Prob. 41PCh. 29 - Unpolarized light of intensity S0 passes first...Ch. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - High microwave intensities can cause biological...Ch. 29 - Use the fact that sunlight intensity at Earths...Ch. 29 - A quasar 10 billion light-years from Earth appears...Ch. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Find the peak electric and magnetic fields 1.5 m...Ch. 29 - A typical fluorescent lamp is a little more than 1...Ch. 29 - Prob. 52PCh. 29 - A laser produces an average power of 7.0 W in a...Ch. 29 - Prob. 54PCh. 29 - A 65-kg astronaut is floating in empty space. If...Ch. 29 - Prob. 56PCh. 29 - A white dwarf star is approximately the size of...Ch. 29 - Use appropriate data from Appendix E to calculate...Ch. 29 - Prob. 59PCh. 29 - Prob. 60PCh. 29 - In a stack of polarizing sheets, each sheet has...Ch. 29 - Prob. 62PCh. 29 - Prob. 63PCh. 29 - Maxwells equations in a dielectric resemble those...Ch. 29 - Prob. 65PCh. 29 - Your roommates father is CEO of a coal company, so...Ch. 29 - The Voyager I spacecraft is now beyond the outer...Ch. 29 - Prob. 68PCh. 29 - Prob. 69PCh. 29 - The table below shows the intensity of the radio...Ch. 29 - If a sunlight-powered sailing spacecraft...Ch. 29 - Prob. 72PPCh. 29 - A sail capable of propelling a spacecraft to the...Ch. 29 - Prob. 74PP
Knowledge Booster
Similar questions
- What potential difference is needed to give a helium nucleus (Q=3.2×10−19CQ=3.2×10^-19C) 124 keV of kinetic energy? Express your answer using two significant figures.arrow_forwardA small charged particle of mass 1.0 x 10-8 kg is traveling rightward between two plates separated by a distance d = 80 cm, as shown below. The electric field between the plates has a constant magnitude of 3.0 x 106 V/m and is directed leftward. The particle's speed is 5.0 x 103 m/s at the left plate and 2.0 x 10³ m/s at the right plate. Ignore the effect of gravity. F (a) Is the particle positively charged or negatively charged? Justify your answer briefly but clearly. (b) Find the charge (with correct sign) of the particle, as well as the potential difference (with correct sign) through which the particle has moved. (Note: The potential difference is positive if the right plate is at a higher potential than the left plate, and negative if the right plate is at a lower potential than the left plate. Show all your work; do not simply plug numbers into a result derived in class.)arrow_forwardA carbon-14 ion with a charge of +6.408x10^-19 C and a mass of 2.34x10^-26 kg is sent through a mass spectrometer and hits a detector at a point 10.0 cm to the left of where the beam leaves the velocity selector. The velocity selector and the detector are both in a region of magentic field of strength 0.500 T. What is the speed of the particle after it leaves the velocity selecctor? Then, what is the accelerating potential needed to reach the speed found in that part if the ions start from rest? Please also explain and show the steps you used to get there/the physics behind why/how you got to the answer to help me better understand. Thank you soo much. Also, the work and the explanation or most important because I already have the correct answer - I'm just unsure of how to get there.arrow_forward
- Cold Atoms: When atoms are cooled to very low temperatures, they move very slowly. At these low speeds, atoms can fall under their own weight. A team of scientists is studying cold ions. Each ion has a mass of 1.91 x 10-25 kg, a charge of 1.6 x 10-19 C, and an average velocity of 15.0 mm/s due north. The scientists are trying to focus a beam of these atoms on a detector 1.000 m away. However, gravity is deflecting the beam. One scientist suggests using a magnetic field to counteract the force of gravity. (a) What minimum magnetic field strength could counteract the force of gravity for these particles? (b) What direction should the field be oriented? Either describe the direction or draw a picture that shows the velocity of the particles, the direction of gravity, and the direction of the magnetic field. Ignore the earth's magnetic field. It has eliminated by magnetic shielding around the experimental setup.arrow_forwardThe phenomenon where electrons are emitted from a material when it absorbs electromagnetic waves is called the photoelectric effect. Visible light shines energy on a metal sheet with energy enough for the metal sheet to emit electrons. In order to measure the energy of these electrons, another negatively charged plate (-24.8 V with respect to the metal sheet) is placed in the path of the electrons. The electrons slow down upon contact with the negatively charged plate and stop. What is the initial speed of these electrons?arrow_forwardAn evacuated tube uses an accelerating voltage of 1.5 kV to accelerate a beam of electrons that hit a copper plate and generated x-rays. What is the maximum (non-relativistic) velocity of the electrons?arrow_forward
- eV is a unit used in nuclear physics for the energy of particles. If an electron's charge is 1.6 * 10^-19 C, and its mass is 9.1 * 10^-31 kg, what is the speed of an electron with 1 eV kinetic energy to one significant figure? A) 600000 m/s (B) 5000000000 m/s (C) 2200 m/s D) 40000 m/sarrow_forwardA cathode-ray tube accelerates electrons to a speed of 26500 kms−1V. What is the potential difference across the tube?arrow_forwardWhy is the following situation impossible? An experimenter is accelerating electrons for use in probing a material. She finds that when she accelerates them through a potential difference of 84.0 kV, the electrons have half the speed she wishes. She quadruples the potential difference to 336 kV, and the electrons accelerated through this potential difference have her desired speed.arrow_forward
- The diagram shows a mass spectrometer used for measuring the masses of isotopes. It consists of an ion generator and accelerator, a velocity selector, and an ion separator, all in a vacuum. In one experiment, tin ions, each of which carries a charge +1.6 × 10-19C, are produced in the ion generator and are then accelerated by a p.d. of 20kV. Tin has a number of isotopes, two of which are tin-118 (118Sn) and tin-120 (120Sn). What will be the final speed of an ion of tin-118?arrow_forwardA cyclotron is used to produce a beam of high-energy deuterons that then collide with a target to produce radioactive isotopes for a medical procedure. Deuterons are nuclei of deuterium, an isotope of hydrogen, consisting of one neutron and one proton, with total mass 3.34×10−27kg. The deuterons exit the cyclotron with a kinetic energy of 6.10 MeV . What is the speed of the deuterons when they exit? If the magnetic field inside the cyclotron is 1.25 T, what is the diameter of the deuterons' largest orbit, just before they exit? If the beam current is 380 μA how many deuterons strike the target each second?arrow_forwardIn a typical television or in an older computer monitor's cathode ray tube (CRT), electrons are accelerated from rest through a potential difference of 2.5×104 V, steered by magnetic fields, and finally strike particular spots on the screen at the front of the tube to create an image. What is the kinetic energy of the electrons after the accelerating process, as they are moving toward the screen?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning