COLLEGE PHYSICS,V.2
11th Edition
ISBN: 9781305965522
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 8P
(a)
To determine
The energy of second energy level of hydrogen atom.
(b)
To determine
The energy of third energy level of hydrogen atom.
(c)
To determine
The orbital radius of second energy level of hydrogen atom.
(d)
To determine
The orbital radius of third energy level of hydrogen atom.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a) Find the energy necessary to raise an electron from states n = 4 to n = 5 in the hydrogen atom.b) Find the radius of orbit n = 4 for a doubly ionized lithium atom (Li2 +, Z = 3).c.) Find the energy necessary to raise an electron from state n = 4 to state n = 5 in Li2 +.
Problem 7: A hydrogen atom has the wave function (r), where n=2,1-1,
m=0.
a) What is the magnitude of the orbital angular momentum of the electron
around the proton
b) What is the magnitude of the z-component of the orbital angular
momentum of the electron around the proton?
c) Sketch the shape of the radial part of the function as a function of distance,
r, from the proton.
d) Find the number of degenerate states, having the same energy as the state
that has the above wave function.
A hydrogen atom is in its fourth excited state. The atom emits a 1.28E+3nm wavelength photon. Determine the maximum possible orbital angular momentum of the electron after emission. Express your answer as multiples of hbar.
Chapter 28 Solutions
COLLEGE PHYSICS,V.2
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beryllium ion with a single electron (denoted Be3+) is in an excited state with radius the same as that of the ground state of hydrogen. (a) What is n for the Be3+ ion? (b) How much energy in eV is needed to ionize the ion from this excited state?arrow_forward(a) What is the minimum value of 1 for a subshell that has 11 electrons in it? (b) If this subshell is in the n=5 shell, what is the spectroscopic notation for this atom?arrow_forward(a) If one subshell of an atom has 9 electrons in it, what is the minimum value of l ? (b) What is the spectroscopic notation for this atom, if this subshell is part of the n=3 shell?arrow_forward
- The ion Li2+ makes ail atomic transition from ail n = 4 state to ail n = 2 state, (a) What is the energy of the photon emitted during the transition? (b) What is the wavelength of the photon?arrow_forwardExplain why spectral lines of the hydrogen atom are split by an external magnetic field. What determines the number and spacing of these lines?arrow_forwardFor an electron in a hydrogen atom in the n=2 state, compute: (a) the angular momentum; (b) the kinetic energy; (c) the potential energy; and (d) the total energy.arrow_forward
- A ground-state hydrogen atom is placed in a uniform magnetic field, and a photon is emitted in the transition from a spin-up to spin-down state. The wavelength of the photon is 168 µm. What is the strength of the magnetic field?arrow_forwardIf an atom has an election in the n = 5 state with m = 3, what are the possible values of l?arrow_forwardWhat are the possible values of m for an electron in the n = 4 state?arrow_forward
- Check Your Understanding When an election in a hydrogen atom is in the first excited state, what prediction does the Bohr model give about its orbital speed and kinetic energy? What is the magnitude of its orbital angular momentum?arrow_forward1arrow_forwardAngular momentum and Spin. An electron in an H-atom has orbital angular momentum magnitude and z-component given by L² = 1(1+1)ħ², Lz = m₁h, 1 = 0,1,2,..., n 1 - m₁ = 0, ±1, ±2, ..., ±l 3 S² = s(s+1) h² = =h²₁ 4 Consider an excited electron (n > 1) on an H-atom. The total angular momentum ] = L + Š, whose magnitude and z-component follow a similar dependence to some quantum numbers j and m; as J² = j(j + 1)ħ², Jz = mjħ 1 S₂ = m₂h = ± = h Where j and m; are quantum numbers which assume values that jumps in steps of one such that j is non-negative and −j ≤ m¡ ≤ j. For a given quantum number 1, what are the (two) possible values for j? Clue: we can use the vector sum relation of angular momenta, then consider the z-component only.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning