COLLEGE PHYSICS,V.2
11th Edition
ISBN: 9781305965522
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 3P
(a)
To determine
The attractive electrostatic force between electron and proton.
(b)
To determine
The electrostatic potential energy of the atom.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Chapter 39, Problem 043
In the ground state of the hydrogen atom, the electron has a total energy of -13.6 ev. What are (a) its kinetic energy and
(b) its potential energy if the electron is a distance 4.0a from the central nucleus? Here a is the Bohr radius.
(a) Number
Units
eV
(b) Number
Units
eV
As per Bohr model of a hydrogen atom for a stable orbit centripetal, Coulomb, and all forces
should be in equilibrium. Therefore, for an electron with mass me and speed v₁ on the nth orbit
with radius rn, (k being Coulomb/s constant)
mevn = ke²/rn
mevn² = ke²/rn
mevn²/rn = ke²/rn
2.2
Ome²v² = ke²/r²
Determine the distance between the electron and proton in an atom if the potential energy U of the electron is 10.1 eV (electronvolt, 1 eV
= 1.6 × 10-19
J). Give your answer in Angstrom (1 A = 10-10 m).
Answer:
Choose... +
Chapter 28 Solutions
COLLEGE PHYSICS,V.2
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Determine the distance between the electron and proton in an atom if the potential energy U of the electron is 13.8 ev (electronvolt, 1 eV = 1.6 × 10-19 J). Give your answer in Angstrom (1 A = 10-10 m). Answer: Choose... + Previous pagearrow_forwardThe electron of a hydrogen atom is in an orbit with radius of 8.46 Å (1 Å = 10-10 m), according to the Bohr model. Which of the following statements is correct? a) The total energy of the orbit is –13.6 eV, and the kinetic energy is +13.6 eV. b) The total energy of the orbit is –0.85 eV, and the potential energy is –1.70 eV. c) The total energy of the orbit is –0.85 eV, and the potential energy is +1.70 eV. d) The total energy of the orbit is –0.85 eV, and the potential energy is –0.85 eV. e) The total energy of the orbit is –3.40 eV, and the potential energy is –6.80 eV.arrow_forwardDetermine the distance between the electron and proton in an atom if the potential energy U of the electron is 13.8 ev (electronvolt, 1 eV -19 1.6 x 10 J). Give your answer in Angstrom (1 A = 10"1º m). Answer: Choose... + Next pagearrow_forward
- q; An electron and a proton are a distance r = 7.5×〖10〗^(-9) m apart. How much energy is required to increase their distance of separation by a factor of two?arrow_forwardA particular Bohr orbit in a hydrogen atom has a total energy of-0.85 eV. What are (a) the kinetic energy of the electron in thisorbit and (b) the electric potential energy of the system?arrow_forwardIn a hydrogen atom, the electron and proton are bound at a distance of about 0.53 Å: (a) Estimate the potential energy of the system in eV, taking the zero of the potential energy at infinite separation of the electron from proton.arrow_forward
- An electron is in the hydrogen atom with n = 5. (a) Find the possible values of L and Lz for this electron, in units of h. (b) For each value of L, find all the possible angles between L → and the z-axis. (c) What are the maximum and minimum values of the magnitude of the angle between L →and the z-axis?arrow_forward.A neutral sodium atom has an ionization potential of 5.1 eV from its ground state.(1) What is the speed of a free electron that has just barely enough kinetic energy tocollisionally ionize a sodium atom in its ground state?(2) What is the speed of a free proton with just enough energy to collisionlly ionize thisatom?(3) What is the temperature of a gas in which the average electron kinetic energy is justbarely sufficient to ionize a sodium atom in its ground state?arrow_forwardThe velocity of electron in the first Bohr orbit of radius 0.5 A.U. is 2.24 x 106 m/s. Calculate the period of revolution of the electron in the same orbit.arrow_forward
- Calculate the speed (in m/s) and radial acceleration (in m/s²) for a ground-state electron in the hydrogen atom. Do the same for the He ion and the Li++ ion. (Enter the magnitudes.) hydrogen atom speed radial acceleration He+ ion speed radial acceleration Li++ ion speed m/s m/s² m/s m/s² m/s radial acceleration m/s²arrow_forwardRobert Millikan was an American physicist who in 1909 performed a classic experiment involving charged oil drops. Millikan adjusted the voltage applied between two metal plates in order to suspend charged drops in the resulting electric field. For a suspended drop, the electrostatic force directed up exactly balances out the weight of the drop. Millikan ultimately determined the charge on an electron and that charge is quantized. This means that charge comes in increments, discrete amounts, rather than any amount.A NEGATIVELY-charged oil drop is suspended between two plates of opposite charge by an electric field of 603 newtons per coulomb. The drop is determined to have a mass of 8.86 x 10-17 kilograms. a. What is the charge on the drop? Include units in your answer.arrow_forwardRobert Millikan was an American physicist who in 1909 performed a classic experiment involving charged oil drops. Millikan adjusted the voltage applied between two metal plates in order to suspend charged drops in the resulting electric field. For a suspended drop, the electrostatic force directed up exactly balances out the weight of the drop. Millikan ultimately determined the charge on an electron and that charge is quantized. This means that charge comes in increments, discrete amounts, rather than any amount.A NEGATIVELY-charged oil drop is suspended between two plates of opposite charge by an electric field of 603 newtons per coulomb. The drop is determined to have a mass of 8.86 x 10-17 kilograms.a. What is the charge on the drop? Include units in your answer. More information.b. How many excess electrons does it carry? Hint: Charge is quantized, so this answer must be just an integer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University