COLLEGE PHYSICS,V.2
11th Edition
ISBN: 9781305965522
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 14CQ
To determine
The reason behind ionization energies are explained in terms of atomic structure.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
a) Calculate the excitation energies for the 1s → 3p electron transition for the H-atom
and for the He+-ion. Calculate the energy values in joules.
b) What is the ionization energy (in eV) of H-atom in the 4d-state?
Note: En
=
2n²
Eh, 1Eh
= 27.2114eV =
2625.500kJ/mol = 4.35974394-10-18 J
Use the information in Table to determine the ground state spectroscopic symbol for indium.
The K series of the discrete spectrum of tungsten contains wavelengths of 0.0185 nm, 0.0209 nm, and 0.0215 nm. The K-shell ionization energy is 69.5 keV. Determine the ionization energies of the L,
M, and N shells.
kev
EL
= 11.83
kev
2.4
Your incorrect answer may have resulted from roundoff error. Make sure you keep extra significant figures in intermediate steps of your calculation. ke
EN
EM
= 10.17
%D
Chapter 28 Solutions
COLLEGE PHYSICS,V.2
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the minimum value of l for a subshell that contains 11 electrons? (b) If this subshell is in the n = 5 shell, what is the spectroscopic notation for this atom?arrow_forwardWhat are the possible values of m for an electron in the n = 4 state?arrow_forwardFor an electron in a hydrogen atom in the n=2 state, compute: (a) the angular momentum; (b) the kinetic energy; (c) the potential energy; and (d) the total energy.arrow_forward
- The wavelength of the four Balmer series lines for hydrogen are found to be 409.9, 433.9, 486.4, and 656.0 nm. What average percentage difference is found between these wavelength numbers and those predicted by (image attached)?arrow_forwardA photon can excite a hydrogen atom makes a from the n = (2.0000x10^0) state to the n = (8.00x10^0) state, what is the energy of this photon? Give your answer in the unit if eV with 3 s.f. %3D %3D Note: Your answer is assumed to be reduced to the highest power possible. Your Answer:arrow_forwardQ4. Calculate the values of electron and hole concentrations in cm³ at 300 K for intrinsic Ge, Si and GaAs, given: Quantity me/mo m/mo Eg (eV) mo e kB h Ge 0.55 0.31 0.66 9.1×10-³1 kg 1.6×10-¹9 C 1.38×10-23 J/K 1.054×10-34 Js Si 1.10 0.56 1.12 Ge 0.068 0.500 1.43arrow_forward
- A doubly ionized lithium atom (Li++) is one that has had two of its three electrons removed. The energy levels of the remaining single-electron ion are closely related to those of the hydrogen atom. The nuclear charge for lithium is +3e instead of just +e. How are the energy levels related to those of hydrogen? How is the radius of the ion in the ground level related to that of the hydrogen atom? Explain.arrow_forwardA hydrogen atom passes through a strong external magnetic field of B= 10 Tesla.A) List the possible quantum states (?, ?, ?l, ?s) for the 3p level.B) Calculate the energies of each of these quantum states.arrow_forwardBelow an energy dispersive spectroscopy (EDS) graph of a sample that has been coated with carbon for electron collection is given. Determine what elements this sample definitely consists of. Explain your reasoning. Which of the elements present in this sample can cause fluorescence in Fe (26) if it was present here? Counts 2500 2000 1500 1000 500 0.5 1 1.5 2.5 3 3.5 4 4.5 E [keV]arrow_forward
- 5arrow_forwardTwo of the wavelengths emitted by a hydrogen atom are 102.6 nm and 1876 nm.a. What are the Balmer formula n and m values for each of these wavelengths?b. For each of these wavelengths, is the light infrared, visible, or ultraviolet?arrow_forwarda. The electron of a hydrogen atom is excited into a higher energy level from a lower energy level. A short time later the electron relaxes down to the no = 1 energy level, releasing a photon with a wavelength of 93.83 nm. Compute the quantum number of the energy level the electron relaxes from, nhi. Note: the Rydberg constant in units of wavenumbers is 109,625 cm-1 nhi =16 b. What would the wavenumber, wavelength and energy of the photon be if instead no = 1 and nhi = 4? V: 6.9121e14 x (cm-¹) λ: (nm) E: 45.8e-20 ✓ (1)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning