COLLEGE PHYSICS,V.2
11th Edition
ISBN: 9781305965522
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 2P
(a)
To determine
The wavelengths of the first three lines in the Paschen series for hydrogen.
(b)
To determine
The region of the electromagnetic spectrum in which the first lines of wavelengths are appeared.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The wavelengths of the Paschen series for hydrogen are given by
(a) Calculate the wavelengths of the first three lines in this series. (b) Identify the region of the electromagnetic spectrum in which these lines appear.
The wavelengths of the Lyman series for hydrogen are given by = RH(1-2), = 2, 3, 4, ...
1/2
(a) Calculate the wavelengths of the first three lines in this series.
nm
nm
nm
(b) Identify the region of the electromagnetic spectrum in which these lines appear.
O ultraviolet region
O infrared region
O x-ray region
O visible light region
O gamma ray region
The wavelengths of the Brackett series for hydrogen are given by
n = 5, 6, 7,....
(a) What are the wavelengths of the first three spectral emission lines in this series (in nm)? (Enter them in order of decreasing
wavelength.)
largest value
nm
nm
smallest value
nm
(b) In which band of the electromagnetic spectrum do these lines appear?
visible light region
O infrared region
O ultraviolet region
O gamma ray region
O x-ray region
Chapter 28 Solutions
COLLEGE PHYSICS,V.2
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Derive an expression for the ratio of X-ray photon frequency for two elements with atomic numbers Z1 and Z2.arrow_forwardThe light observed that is emitted by a hydrogen atom is explained by a simple model of its structure with one proton in its nucleus and an electron bound to it, but only with internal energies of the atom satisfying EH=−RH/n2EH=−RH/n2 where RHRH is the Rydberg constant and nn is an integer such as 1, 2, 3 ... and so on. When a hydrogen atom in an excited state emits light, the photon carries away energy and the atom goes into a lower energy state. Be careful about units. The Rydberg constant in eV is 13.605693009 eV That would be multiplied by the charge on the electron 1.602× 10-19 C to give 2.18× 10-18 J A photon with this energy would have a frequency f such that E=hf. Its wavelength would be λ = c/f = hc/E. Sometimes it is handy to measure the Rydberg constant in units of 1/length for this reason. You may see it given as 109737 cm-1 if you search the web, so be aware that's not joules. The following questions are intended to help you understand the connection between…arrow_forwardplease help as soon as possiblearrow_forward
- a) An electron in a hydrogen atom has energy E= -3.40 eV, where the zero of energy is at the ionization threshold. In the Bohr model, what is the angular momentum of the electron? Express your result as a multiple of ħ. Ans. b) What is the deBroglie wavelength of the electron when it is in this state? Ans. c) When the electron is in this state, what is the ratio of the circumference of the orbit of the electron to the deBroglie wavelength of the electron? Ans. d) The electron makes a transition from the state with energy E= -3.40 eV to the ground state, that has energy -13.6 eV. What is the wavelength of the photon emitted during this transition? Ans.arrow_forwardFind the ratio between the wavelengths of the ‘most energetic’ spectral lines in the Balmer and Paschen series of the hydrogen spectrum.arrow_forwardA photoelectron is emitted from K shell (n = 1) of a carbon atom, and an election in L shell (n = 2) moves down to the vacancy in K shell. What is the wavelength, in the unit of nm, of the photon emitted during this transition? Use for the energy difference between two states in an atom. E0 = 13.6 eV and atomic number of carbon is Z = 12. Use σ = 1 for the transition to K shell and σ = 7.4 for the transition to L shellarrow_forward
- A visible (violet) emission spectral line for chromium (Cr) occurs at wavelength λ = 425.435 nm. A) What is the frequency (ν) of this light?(Give correct units and answer to six significant figures.) B) What is the magnitude of the energy change associated with the emission of one mole of photons of light with this wavelength?arrow_forwardWhat is the maximum photon wavelength that would free an electron in a hydrogen atom when it is in the n = 8 excited state? (Give the answer in meters.)arrow_forwardYou have three metal samples—A, B, and C—that aretantalum (Ta), barium (Ba), and tungsten (W), but you don’tknow which is which. Metal A emits electrons in response to vis-ible light; metals B and C require UV light. (a) Identify metal A,and find the longest wavelength that removes an electron. (b)What range of wavelengths would distinguish B and C? [Thework functions are Ta (6.81x10^-19J), Ba (4.30x10^-19J), andW (7.16x10^-19J)arrow_forward
- i need the answer quicklyarrow_forwardX-rays of wavelength 1.520×10^−2 nm are scattered from a carbon atom. The wavelength shift is measured to be 3.26×10^−4 nm. a) What is the scattering angle? b) How much energy, in , does each photon impart to each electron?arrow_forwardAn electron is in the nth Bohr orbit of the hydrogen atom. n3 (a) Show that the period of the electron is T = to n³ and determine the numerical value of to. 153 as (b) On average, an electron remains in the n = 2 orbit for approximately 8 us before it jumps down to the n = 1 (ground-state)orbit. How many revolutions does the electron make in the excited state? 8.26e+09 × (c) Define the period of one revolution as an electron year, analogous to an Earth year being the period of the Earth's motion around the Sun. Explain whether we should think of the electron in the n = 2 orbit as "living for a long time."arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax