Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 28, Problem 27P

The basic differential equation of the elastic curve for a uniformly loaded beam (Fig. P28.27) is given as

E I d 2 y d x 2 = w L x 2 w x 2 2

Where E = the modulus of elasticity and I = the moment of inertia. Solve for the deflection of the beam using (a) the finite difference approach ( Δ x = 2 ft ) and (b) the shooting method. The following parameter values apply: E = 30 , 000 ksi , I = 800 in 4 , w = 1 kip/ft,  L = 10 ft Compare your numerical results to the analytical solution,

y = w L x 3 12 E I w x 4 24 E I w L 3 x 24 E I

Chapter 28, Problem 27P, 28.27	The basic differential equation of the elastic curve for a uniformly loaded beam (Fig. P28.27)

FIGURE P28.27

(a)

Expert Solution
Check Mark
To determine

To calculate: The deflection of the beam by the finite-difference method with Δx=2 ft if the differential equation for the elastic curve for a uniformly loaded beam is given as EId2ydx2=wLx2wx22. Also, compare the result with the analytical solution.

Answer to Problem 27P

Solution:

The deflection of the beam by the finite-difference method is,

x y y-Analytical
0 0 0
24 0.00576 0.00557
48 0.009216 0.00892
72 0.009216 0.00892
96 0.00576 0.00557
120 0 0

Explanation of Solution

Given Information:

The differential equation for the elastic curve for a uniformly loaded beam is given as,

EId2ydx2=wLx2wx22

Formula to find analytical value,

y=wLx312EIwx424EIwL3x24EI

Where,

The modulus of elasticity, E=30,000 ksi.

The moment of inertia, I=800 in4.

The values,

w=1 kip/ftL=10 ft

Formula used:

The conversion formula,

1 ft=12 in

The value of second order derivative by finite difference method is given as,

d2Tdx2=Ti+12Ti+Ti1Δx2

Calculation:

Consider the equation,

EId2ydx2=wLx2wx22

Rewrite the above equation as,

d2ydx2=wx2EI(Lx)

Substitute the values, E=30,000 ksi, I=800 in4,w=0.0833 kip/in and L=120 in in the above equation,

d2ydx2=0.0833x2×30000×800(120x)=1.735×109x(120x)=208.2×109x1.735×109x2

Now, the second order derivative by finite difference method gives,

d2ydx2=yi+12yi+yi1(Δx)2

Therefore,

yi+12yi+yi1(24)2=208.2×109xi1.735×109xi2yi+12yi+yi1=576(208.2×109xi1.735×109xi2)yi+12yi+yi1=1.2×104xi1×106xi2

Put i=1 for the first node,

y1+12y1+y11=1.2×104x11×106x12y22y1+y0=1.2×104x11×106x12

The boundary condition is, y0=0 and x1=24.Thus,

y22y1+0=1.2×104(24)1×106(24)2y22y1=2.304×103

Put i=2 for the second node,

y2+12y2+y21=1.2×104x21×106x22y32y2+y1=1.2×104x21×106x22

Substitute x2=48 in the above equation,

y32y2+y1=1.2×104×481×106×(48)2=57.6×1042304×106=3.456×103

Put i=3 for the third node,

y3+12y3+y31=1.2×104x31×106x32y42y3+y2=1.2×104x31×106x32

Substitute x2=72 in the above equation,

y42y3+y2=1.2×104×721×106×(72)2=3.456×103

Put i=4 for the fourth node,

y4+12y4+y41=1.2×104x41×106x42y52y4+y3=1.2×104x41×106x42

Substitute x2=96 and the boundary condition y5=0 in the above equation,

y52y4+y3=1.2×104×961×106×(96)22y4+y3=2.304×103

The matrix form of the above equations is given as below,

[2100121001210012]{y1y2y3y4}={2.304×1033.456×1033.456×1032.304×103}

Use MATLAB to find the solution of the above system as below,

Code:

%Write the matrix

A=[-2 1 0 0; 1 -2 1 0; 0 1 -2 1; 0 0 1 -2];

%write the values of rhs

b=[0.002304 0.003456 0.003456 0.002304]';

%find the result

Y=A\b

Output:

Numerical Methods for Engineers, Chapter 28, Problem 27P , additional homework tip  1

Now, for the analytical value, consider the equation y=wLx312EIwx424EIwL3x24EI.

Substitute the values, E=30,000 ksi, I=800 in4,w=0.0833 kip/in and L=120 in in the above equation,

y=0.0833x12×30000×800(120x2x32(120)32)=2.89236×1010x(120x20.5x3864000)

Use excel to find the values of y at different values of x as below,

Step 1: Name the column A as x and go to column A2 and put 0 then go to column A3 and write the formula as,

=A2+24

Then, Press enter and drag the column up to x=120.

Step 2: Now name the column B as y and go to column B2 andwrite the formula as,

=2.89236*10^(-10)*A2*(120*A2^2-0.5*A2^3-864000)

Step 3: Press enter and drag the column up to x=120.

The result obtained as,

x y-Analytical
0 0
24 0.00557
48 0.00892
72 0.00892
96 0.00557
120 0

(b)

Expert Solution
Check Mark
To determine

To calculate: The deflection of the beam by the shooting method with Δx=2 ft if the differential equation for the elastic curve for a uniformly loaded beam is given as EId2ydx2=wLx2wx22. Also, compare the result with the analytical solution.

Answer to Problem 27P

Solution:

A few values of deflection of the beam by the shooting method is,

x y z
0 0 -1.6E-06
0.25 -4.1E-07 -1.6E-06
0.5 -8.2E-07 -1.6E-06
0.75 -1.2E-06 -1.6E-06
1 -1.6E-06 -1.6E-06
1.25 -2E-06 -1.5E-06
1.5 -2.4E-06 -1.4E-06
1.75 -2.8E-06 -1.4E-06
2 -3.2E-06 -1.3E-06
2.25 -3.5E-06 -1.2E-06
2.5 -3.8E-06 -1.1E-06
2.75 -4.1E-06 -1E-06
3 -4.4E-06 -9E-07

Explanation of Solution

Given Information:

The differential equation for the elastic curve for a uniformly loaded beam is given as,

EId2ydx2=wLx2wx22

Formula to find analytical value,

y=wLx312EIwx424EIwL3x24EI

Where,

The modulus of elasticity, E=30,000 ksi.

The moment of inertia, I=800 in4.

The values,

w=1 kip/ftL=10 ft

Formula used:

The conversion formula,

1 ft=12 in

Calculation:

Consider the equation,

EId2ydx2=wLx2wx22

Rewrite the equation as,

d2ydx2=wLx2EIwx22EI

Assume dydx=z. Thus,

dzdx=wLx2EIwx22EI=w2EI(Lxx2)

Substitute the values, E=30,000 ksi, I=800 in4,w=0.0833 kip/in and L=120 in in the above equation,

dzdx=0.0833×120x2×30000×8000.0833x22×30000×800=1.73542×109(120xx2)

Use VBA program as below to solve the above differential equation as below,

Code:

OptionExplicit

'Create a function find

Subfind()

'declare the variables as integer

Dim n AsInteger, j AsInteger

'declare the variables as double

DimdydxAsDouble, x AsDouble, dy2dx AsDouble, yanalAsDouble, E AsDouble, I AsDouble, w AsDouble, L AsDouble

DimolddydxAsDouble, oldy AsDouble, y AsDouble, h AsDouble

'Set the values of the variables

E =30000

I =800

w =1

L =10

y =0

x =0

h =0.25

dydx=0

'store dydx and analytical solution

dydx= caldydx(w, E, I, L, x)

yanal= caly(w, E, I, L, x)

'use for loop to determine different value of y and y analytical

For j =1 To41

'store the value of y at oldy and dydx in olddydx

oldy = y

olddydx= dydx

'Store d2ydx, dydx and analytical solution

dy2dx = caldy2dx(w, E, I, L, x)

dydx= caldydx(w, E, I, L, x)

yanal= caly(w, E, I, L, x)

'move to the cell b3

Range("b1"). Select

ActiveCell.Value="shooting method"

'Assign name to the columns

ActiveCell.Offset(1,0). Select

ActiveCell.Value="x"

ActiveCell.Offset(0,1). Select

ActiveCell.Value="y"

ActiveCell.Offset(0,1). Select

ActiveCell.Value="z"

ActiveCell.Offset(0,1). Select

ActiveCell.Value="dy2dx"

ActiveCell.Offset(0,1). Select

ActiveCell.Value="y-anal"

'dislay values in cell

Range("b2"). Select

ActiveCell.Offset(j,0). Select

ActiveCell.Value= x

ActiveCell.Offset(0,1). Select

ActiveCell.Value= oldy

ActiveCell.Offset(0,1). Select

ActiveCell.Value= dydx

ActiveCell.Offset(0,1). Select

ActiveCell.Value= dy2dx

ActiveCell.Offset(0,1). Select

ActiveCell.Value= yanal

'Write the next value of x

x = x + h

'Write the next value of y by euler method

y = oldy + olddydx* h

Next

EndSub

'Define d2ydx function

Function caldy2dx(w, E, I, L, x)

'Declare the variables

Dim t AsDouble

'Write the formula

t =((w * L * x)/(2* E * I))-((w * x * x)/(2* E * I))

'Store the value

caldy2dx = t

EndFunction

'Define dydx

Functioncaldydx(w, E, I, L, x)

'Declare the variables

Dim t AsDouble, c AsDouble

'Set the values

c =-0.000001648

'Write the formula

t =((w * L * x * x)/(4* E * I))-((w * x * x * x)/(6* E * I))+ c

'Store the value

caldydx= t

EndFunction

'Define the function caly for analytical value

Functioncaly(w, E, I, L, x)

'Declare the variables

Dim t AsDouble

'Write the formula

t =((w * L * x * x * x)/(12* E * I))-((w * x * x * x * x)/(24* E * I))-((w * L * L * L * x)/(24* E * I))

'Store the value

caly= t

EndFunction

Output:

shooting method
x y z dy2dx y-anal
0 0 -1.6E-06 0 0
0.25 -4.1E-07 -1.6E-06 5.08E-08 -4.3E-07
0.5 -8.2E-07 -1.6E-06 9.9E-08 -8.6E-07
0.75 -1.2E-06 -1.6E-06 1.45E-07 -1.3E-06
1 -1.6E-06 -1.6E-06 1.88E-07 -1.7E-06
1.25 -2E-06 -1.5E-06 2.28E-07 -2.1E-06
1.5 -2.4E-06 -1.4E-06 2.66E-07 -2.5E-06
1.75 -2.8E-06 -1.4E-06 3.01E-07 -2.9E-06
2 -3.2E-06 -1.3E-06 3.33E-07 -3.2E-06
2.25 -3.5E-06 -1.2E-06 3.63E-07 -3.6E-06
2.5 -3.8E-06 -1.1E-06 3.91E-07 -3.9E-06
2.75 -4.1E-06 -1E-06 4.15E-07 -4.2E-06
3 -4.4E-06 -9E-07 4.38E-07 -4.4E-06
3.25 -4.7E-06 -7.9E-07 4.57E-07 -4.6E-06
3.5 -4.9E-06 -6.7E-07 4.74E-07 -4.8E-06
3.75 -5.1E-06 -5.5E-07 4.88E-07 -5E-06
4 -5.2E-06 -4.3E-07 5E-07 -5.2E-06
4.25 -5.4E-06 -3E-07 5.09E-07 -5.3E-06
4.5 -5.5E-06 -1.7E-07 5.16E-07 -5.4E-06
4.75 -5.6E-06 -4.2E-08 5.2E-07 -5.4E-06
5 -5.6E-06 8.81E-08 5.21E-07 -5.4E-06
5.25 -5.6E-06 2.18E-07 5.2E-07 -5.4E-06
5.5 -5.6E-06 3.48E-07 5.16E-07 -5.4E-06
5.75 -5.5E-06 4.76E-07 5.09E-07 -5.3E-06
6 -5.4E-06 6.02E-07 5E-07 -5.2E-06
6.25 -5.3E-06 7.26E-07 4.88E-07 -5E-06
6.5 -5.2E-06 8.46E-07 4.74E-07 -4.8E-06
6.75 -5E-06 9.62E-07 4.57E-07 -4.6E-06
7 -4.8E-06 1.07E-06 4.38E-07 -4.4E-06
7.25 -4.5E-06 1.18E-06 4.15E-07 -4.2E-06
7.5 -4.3E-06 1.28E-06 3.91E-07 -3.9E-06
7.75 -4E-06 1.38E-06 3.63E-07 -3.6E-06
8 -3.7E-06 1.46E-06 3.33E-07 -3.2E-06
8.25 -3.3E-06 1.54E-06 3.01E-07 -2.9E-06
8.5 -3E-06 1.61E-06 2.66E-07 -2.5E-06
8.75 -2.6E-06 1.68E-06 2.28E-07 -2.1E-06
9 -2.2E-06 1.73E-06 1.88E-07 -1.7E-06
9.25 -1.7E-06 1.77E-06 1.45E-07 -1.3E-06
9.5 -1.3E-06 1.8E-06 9.9E-08 -8.6E-07
9.75 -8.7E-07 1.82E-06 5.08E-08 -4.3E-07
10 -4.2E-07 1.82E-06 0 0

Now, to draw the graph of y and y-analytical follow the step as below,

Step 1: Select the cell from B2 to B43 and cell C2 to C43. Then, go to the Insert and select the scatter with smooth lines from the chart.

Step 2: Select the cell from B2 to B43 and cell F2 to F43. Then, go to the Insert and select the scatter with smooth lines from the chart.

Step 3: Select one of the graphs and paste it on another graph to merge the graphs.

The graph obtained is,

Numerical Methods for Engineers, Chapter 28, Problem 27P , additional homework tip  2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1.3. The dots of Output 2 lie in pairs. Why? What property of esin(x) gives rise to this behavior?
1.6. By manipulating Taylor series, determine the constant C for an error expansion of (1.3) of the form wj−u' (xj) ~ Ch¼u (5) (x;), where u (5) denotes the fifth derivative. Based on this value of C and on the formula for u(5) (x) with u(x) = esin(x), determine the leading term in the expansion for w; - u'(x;) for u(x) = esin(x). (You will have to find maxε[-T,T] |u(5) (x)| numerically.) Modify Program 1 so that it plots the dashed line corresponding to this leading term rather than just N-4. This adjusted dashed line should fit the data almost perfectly. Plot the difference between the two on a log-log scale and verify that it shrinks at the rate O(h6).
Define sinc(x) = sin(x)/x, except with the singularity removed.  Differentiate sinc(x) once and twice.

Chapter 28 Solutions

Numerical Methods for Engineers

Ch. 28 - An on is other malbatchre actor can be described...Ch. 28 - The following system is a classic example of stiff...Ch. 28 - 28.13 A biofilm with a thickness grows on the...Ch. 28 - 28.14 The following differential equation...Ch. 28 - Prob. 15PCh. 28 - 28.16 Bacteria growing in a batch reactor utilize...Ch. 28 - 28.17 Perform the same computation for the...Ch. 28 - Perform the same computation for the Lorenz...Ch. 28 - The following equation can be used to model the...Ch. 28 - Perform the same computation as in Prob. 28.19,...Ch. 28 - 28.21 An environmental engineer is interested in...Ch. 28 - 28.22 Population-growth dynamics are important in...Ch. 28 - 28.23 Although the model in Prob. 28.22 works...Ch. 28 - 28.25 A cable is hanging from two supports at A...Ch. 28 - 28.26 The basic differential equation of the...Ch. 28 - 28.27 The basic differential equation of the...Ch. 28 - A pond drains through a pipe, as shown in Fig....Ch. 28 - 28.29 Engineers and scientists use mass-spring...Ch. 28 - Under a number of simplifying assumptions, the...Ch. 28 - 28.31 In Prob. 28.30, a linearized groundwater...Ch. 28 - The Lotka-Volterra equations described in Sec....Ch. 28 - The growth of floating, unicellular algae below a...Ch. 28 - 28.34 The following ODEs have been proposed as a...Ch. 28 - 28.35 Perform the same computation as in the first...Ch. 28 - Solve the ODE in the first part of Sec. 8.3 from...Ch. 28 - 28.37 For a simple RL circuit, Kirchhoff’s voltage...Ch. 28 - In contrast to Prob. 28.37, real resistors may not...Ch. 28 - 28.39 Develop an eigenvalue problem for an LC...Ch. 28 - 28.40 Just as Fourier’s law and the heat balance...Ch. 28 - 28.41 Perform the same computation as in Sec....Ch. 28 - 28.42 The rate of cooling of a body can be...Ch. 28 - The rate of heat flow (conduction) between two...Ch. 28 - Repeat the falling parachutist problem (Example...Ch. 28 - 28.45 Suppose that, after falling for 13 s, the...Ch. 28 - 28.46 The following ordinary differential equation...Ch. 28 - 28.47 A forced damped spring-mass system (Fig....Ch. 28 - 28.48 The temperature distribution in a tapered...Ch. 28 - 28.49 The dynamics of a forced spring-mass-damper...Ch. 28 - The differential equation for the velocity of a...Ch. 28 - 28.51 Two masses are attached to a wall by linear...

Additional Math Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY