Given Information:
The series of first order, liquid phase reactions is,
A→k1B→k2C
The second order ODEs by using the steady-state mass balance.
Dd2cadx2−Udcadx−k1ca=0Dd2cbdx2−Udcbdx+k1ca−k2cb=0Dd2ccdx2−Udccdx+k2cb=0
Here, c is the concentration (mol/L), x is the distance (m), D is the dispersion coefficient (0.1 m2/min), U is the velocity (1 m/min), k1 is the reaction rate (3/min), k2 is the reaction rate (1/min).
Refer to the Prob 28.14, the Danckwerts boundary conditions is,
Ucin=Uc(x=0)−Ddcdx(x=0)
dcdx(x=L)=0
Here, ca,in is the concentration in the inflow (10 mol/L), and L is the length of the reactor (0.5 m).
Δx=0.05 m
Formula used:
The finite divided difference formula is,
f″(x0)=ci−1−2ci+ci+1Δx2
Calculation:
Recall the ordinary differential equations,
Dd2cadx2−Udcadx−k1ca=0Dd2cbdx2−Udcbdx+k1ca−k2cb=0Dd2ccdx2−Udccdx+k2cb=0
Substitute the finite divided difference formula in the above differential equations.
D(ca,i−1−2ca,i+ca,i+1Δx2)−U(ca,i+1−ca,i−12Δx)−k1ca,i=0D(cb,i−1−2cb,i+cb,i+1Δx2)−U(cb,i+1−cb,i−12Δx)+k1ca,i−k2cb,i=0D(cc,i−1−2cc,i+cc,i+1Δx2)−U(cc,i+1−cc,i−12Δx)+k2cb,i=0
Substitute (0.1 m2/min) for D, (1 m/min) for U, 0.05 m for Δx, (3/min) for k1, and (1/min) for k2 yield unit.
(0.1)(ca,i−1−2ca,i+ca,i+1(0.05)2)−(1)(ca,i+1−ca,i−12(0.05))−(3)ca,i=0(0.1)(cb,i−1−2cb,i+cb,i+1(0.05)2)−(1)(cb,i+1−cb,i−12(0.05))+(3)ca,i−(1)cb,i=0(0.1)(cc,i−1−2cc,i+cc,i+1(0.05)2)−(1)(cc,i+1−cc,i−12(0.05))+(1)cb,i=0
Solve further,
−50ca,i−1+83ca,i−30ca,i+1=0−50cb,i−1+81cb,i−30cb,i+1=3ca,i−50cc,i−1+80cc,i−30cc,i+1=cb,i
Now solve for inlet node i=1, use a finite difference approximation for the first derivative.
Here use the second order version from the Table 19.3 for the interior nodes,
Uca,in=Uca,1−D−ca,3+4ca,2−3ca,12Δx
Ucb,in=Ucb,1−D−cb,3+4cb,2−3cb,12Δx
Ucc,in=Ucc,1−D−cc,3+4cc,2−3cc,12Δx
Can be solved for,
(3D2Δx2+UΔx)ca,1−(2DΔx2)ca,2+(D2Δx2)ca,3=UΔxca,in
(3D2Δx2+UΔx)cb,1−(2DΔx2)cb,2+(D2Δx2)cb,3=UΔxcb,in
(3D2Δx2+UΔx)cc,1−(2DΔx2)cc,2+(D2Δx2)cc,3=UΔxcc,in
Substitute (0.1 m2/min) for D, (1 m/min) for U, 0.05 m for Δx, and 10 mol/L for ca,in yield unit.
80ca,1−80ca,2+20ca,3=200
80cb,1−80cb,2+20cb,3=0
80cc,1−80cc,2+20cc,3=0
Solve for the outer node (i=10), the zero derivative condition which implies that c11=c9,
−(2DΔx2)c9+(2DΔx2+k)c10=0
The similar equations can be written for the other nodes, because the condition does not include reaction rates Substitute all the parameter gives,
−80ca,9+83ca,10=0−80cb,9+81cb,10=3ca,10
−80cc,9+80cc,10=cb,10
Rearrange the all equations in matrix form for each reactant separately, because the reactions are in series.
Write for the reactant A.
[80−802000000000−5083−30000000000−5083−30000000000−5083−30000000000−5083−30000000000−5083−30000000000−5083−30000000000−5083−30000000000−5083−30000000000−5083−3000000000083−80][ca,1ca,2ca,3ca,4ca,5ca,6ca,7ca,8ca,9ca,10ca,11]=[2000000000000]
Write the following code in MATLAB.
A=[80 -80 20 0 0 0 0 0 0 0 0
-50 83 -30 0 0 0 0 0 0 0 0
0 -50 83 -30 0 0 0 0 0 0 0
0 0 -50 83 -30 0 0 0 0 0 0
0 0 0 -50 83 -30 0 0 0 0 0
0 0 0 0 -50 83 -30 0 0 0 0
0 0 0 0 0 -50 83 -30 0 0 0
0 0 0 0 0 0 -50 83 -30 0 0
0 0 0 0 0 0 0 -50 83 -30 0
0 0 0 0 0 0 0 0 -50 83 -30
0 0 0 0 0 0 0 0 0 83 -80];
b=[200;0;0;0;0;0;0;0;0;0;0];
c=A\b;
c'
The output is,
ans =
Columns 1 through 5
8.0655 7.1509 6.3416 5.6270 4.9988
Columns 6 through 10
4.4516 3.9847 3.6050 3.3328 3.2123
Column 11
3.3328
Write the all the above equations in matrix form for the reactant B.
[80−802000000000−5081−30000000000−5081−30000000000−5081−30000000000−5081−30000000000−5081−30000000000−5081−30000000000−5081−30000000000−5081−30000000000−5081−3000000000081−80][cb,1cb,2cb,3cb,4cb,5cb,6cb,7cb,8cb,9cb,10cb,11]=[021.452719.024816.881014.996413.354811.954110.81509.99849.63699.6369]
Write the following code in MATLAB.
A=[80 -80 20 0 0 0 0 0 0 0 0
-50 81 -30 0 0 0 0 0 0 0 0
0 -50 81 -30 0 0 0 0 0 0 0
0 0 -50 81 -30 0 0 0 0 0 0
0 0 0 -50 81 -30 0 0 0 0 0
0 0 0 0 -50 81 -30 0 0 0 0
0 0 0 0 0 -50 81 -30 0 0 0
0 0 0 0 0 0 -50 81 -30 0 0
0 0 0 0 0 0 0 -50 81 -30 0
0 0 0 0 0 0 0 0 -50 81 -30
0 0 0 0 0 0 0 0 0 81 -80];
b=[0;21.4527;19.0248;16.881;14.9964;13.3548;
11.9541;10.815;9.9984;9.6369;9.6369];
c=A\b;
c'
The output is,
ans =
1.6486 2.4090 3.0415 3.5629 3.9880 4.3295 4.5977 4.7997 4.9358
4.9938 4.9358
Write the all the above equations in matrix form for the reactant C.
[80−802000000000−5080−30000000000−5080−30000000000−5080−30000000000−5080−30000000000−5080−30000000000−5080−30000000000−5080−30000000000−5080−30000000000−5080−3000000000080−80][cc,1cc,2cc,3cc,4cc,5cc,6cc,7cc,8cc,9cc,10cc,11]=[02.40903.04153.56293.98804.32954.59774.79974.93584.99384.9358]
Write the following code in MATLAB.
A=[80 -80 20 0 0 0 0 0 0 0 0
-50 80 -30 0 0 0 0 0 0 0 0
0 -50 80 -30 0 0 0 0 0 0 0
0 0 -50 80 -30 0 0 0 0 0 0
0 0 0 -50 80 -30 0 0 0 0 0
0 0 0 0 -50 80 -30 0 0 0 0
0 0 0 0 0 -50 80 -30 0 0 0
0 0 0 0 0 0 -50 80 -30 0 0
0 0 0 0 0 0 0 -50 80 -30 0
0 0 0 0 0 0 0 0 -50 80 -30
0 0 0 0 0 0 0 0 0 80 -80];
b=[0;2.4090;3.0415;3.5629;3.9880;4.3295;
4.5977;4.7997;4.9358;4.9938;4.9358];
c=A\b;
c'
The output is,
Columns 1 through 7
0.2859 0.4402 0.6169 0.8101 1.0133 1.2191 1.4178
Columns 8 through 11
1.5957 1.7321 1.7949 1.7332
The reaction is in series, thus the system for each reactant is,
The below plot shows the distance versus reactant.