
To find: The first, second, third and fourth derivatives of the function

Answer to Problem 47E
The first, second, third and fourth derivatives of the function is
Explanation of Solution
Given:
The function is,
Result Used:
The derivative of a function f is denoted by
Calculation:
The first derivative of the function is computed as follows,
Simplified further to obtain the derivative of the function,
Therefore, the derivative of the function
The second derivative of the function is computed as follows,
Simplify the expression and obtain the derivatives,
Therefore, the second derivative of the function
The third derivative of the function is computed as follows,
Simplify the terms and obtain derivatives,
Therefore, the third derivative of the function
The fourth derivative of the function is computed as follows,
Thus, the fourth derivative of the function
To sketch: The graph of the functions
The graphs are consistent with the geometric interpretations of these derivatives.
Graph:
Use the online graphing calculator to draw the functions
Geometrical Interpretation:
Take several points on the domain and estimate slope of the tangent to the function
Thus, the derivative
The
Take several points on the domain and estimate slope of the tangent to the function
Therefore, the function
The
The straight line has same slope at all points. That is,
From the Figure 1, the estimated slope of the function
Therefore, the function
Chapter 2 Solutions
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
- Can you help explain what I did based on partial fractions decomposition?arrow_forwardSuppose that a particle moves along a straight line with velocity v (t) = 62t, where 0 < t <3 (v(t) in meters per second, t in seconds). Find the displacement d (t) at time t and the displacement up to t = 3. d(t) ds = ["v (s) da = { The displacement up to t = 3 is d(3)- meters.arrow_forwardLet f (x) = x², a 3, and b = = 4. Answer exactly. a. Find the average value fave of f between a and b. fave b. Find a point c where f (c) = fave. Enter only one of the possible values for c. c=arrow_forward
- please do Q3arrow_forwardUse the properties of logarithms, given that In(2) = 0.6931 and In(3) = 1.0986, to approximate the logarithm. Use a calculator to confirm your approximations. (Round your answers to four decimal places.) (a) In(0.75) (b) In(24) (c) In(18) 1 (d) In ≈ 2 72arrow_forwardFind the indefinite integral. (Remember the constant of integration.) √tan(8x) tan(8x) sec²(8x) dxarrow_forward
- Find the indefinite integral by making a change of variables. (Remember the constant of integration.) √(x+4) 4)√6-x dxarrow_forwarda -> f(x) = f(x) = [x] show that whether f is continuous function or not(by using theorem) Muslim_mathsarrow_forwardUse Green's Theorem to evaluate F. dr, where F = (√+4y, 2x + √√) and C consists of the arc of the curve y = 4x - x² from (0,0) to (4,0) and the line segment from (4,0) to (0,0).arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





