Single Variable Calculus: Concepts and Contexts, Enhanced Edition
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
4th Edition
ISBN: 9781337687805
Author: James Stewart
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 2.6, Problem 4E

(a)

To determine

To find: The slope of the tangent line to the curve y=xx3 at the point (1,0).

(a)

Expert Solution
Check Mark

Answer to Problem 4E

The slope of the tangent line to the curve y=xx3 at the point (1,0)

(i) Using Definition 1 is m=2_.

(ii) Using Equation 2 is m=2_.

Explanation of Solution

Given:

The equation of the curve y=xx3.

The slope of the tangent line to the curve at the point (1,0).

Formula used:

Definition 1: The slope of the tangent curve y=f(x) at the point P(a,f(a)), m=limxaf(x)f(a)xa.

Equation 2: The slope of the tangent line in definition 1 becomes, m=limh0f(a+h)f(a)h.

Difference of square formula: (a2b2)=(a+b)(ab).

Calculation:

Section (i)

Obtain the slope of the tangent line to the curve at the point (1, 0) using Definition 1.

Substitute a=1 and f(a)=0 in Definition 1,

m=limx1f(x)0x1=limx1xx30x1=limx1x(1x2)x1

Apply the difference of squares formula,

m=limx1x(1x)(1+x)x1=limx1x((x1))(1+x)(x1)=limx1x(x1)(1+x)(x1)

Since the limit x approaches 1 but not equal to 1, cancel the common term (x1)(0) from both the numerator and the denominator,

m=limx1(x(x+1))=limx1(x2x)=(1)21=2

Thus, the slope of the tangent line to the parabola at the point (1, 0) by using Definition 1 is m=2_.

Section (ii)

Obtain the slope of the tangent line to the parabola at the point (1, 0) by using Equation 2.

Substitute a=1 and f(a)=0 in Equation 2,

m=limh0f(1+h)f(1)h=limh0(xx3)x=1+h0h=limh0((1+h)(1+h)3)h

Simplify the terms by expanding (1+h3) as shown below.

m=limh0((1+h)(h3+3h2+3h+1))h=limh01+hh33h23h1h=limh0h33h22hh=limh0h(h2+3h+2)h

Since the limit h approaches 0 but not equal to 0, cancel the common term h(0) from both the numerator and the denominator,

m=limh0((h2+3h+2))=(02+3(0)+2)=(2)=2

Thus, the slope of the tangent line to the parabola at the point (1, 0) by using Equation 2 is m=2_.

(b)

To determine

To find: The equation of the tangent line in part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 4E

The equation of the tangent line in part (a) is y=2x+2_.

Explanation of Solution

Formula used:

The equation of the tangent line to the curve y=f(x) at the point (a,f(a)) is

yf(a)=f(a)(xa) .

Calculation:

Obtain the equation of the tangent line in part (a).

Since the tangent line to the curve y=f(x) at (a,f(a)) is the line through the point (a,f(a)) whose slope is equal to the derivative of a, f(a)=2.

Substitute a=1, f(a)=0 and the slope f(a)=2 in the equation of tangent line,

(yf(a))=f(a)(xa)y0=2(x1)=2x+2

Isolate y, y=2x+2.

Thus, the equation of the tangent line is y=2x+2_.

(c)

To determine

To sketch: The graph of the tangent line and the curve. Check zoom in the graph toward the point (1, 0) until the curve and the tangent line is indistinguishable.

(c)

Expert Solution
Check Mark

Explanation of Solution

The equation of the tangent line y=2x+2

The equation of the given curve is y=xx3.

Use the online graphing calculator to draw the graph of the functions as shown below in Figure 1.

Single Variable Calculus: Concepts and Contexts, Enhanced Edition, Chapter 2.6, Problem 4E , additional homework tip  1

Graph:

Use the online graphing calculator to zoom toward the point (1, 0) as shown below in Figure 2.

Single Variable Calculus: Concepts and Contexts, Enhanced Edition, Chapter 2.6, Problem 4E , additional homework tip  2

From Figure 2, it is observed that when zoom in the graph toward the point (1, 0), the graph of the tangent line and the curve looks likes almost identical.

Hence, it is verified that the graph of the tangent line and the curve zooming toward the point (1, 0) until the tangent line are indistinguishable.

Chapter 2 Solutions

Single Variable Calculus: Concepts and Contexts, Enhanced Edition

Ch. 2.2 - Explain what it means to say that...Ch. 2.2 - Prob. 3ECh. 2.2 - Prob. 4ECh. 2.2 - Prob. 5ECh. 2.2 - Prob. 6ECh. 2.2 - Sketch the graph of the function and use it to...Ch. 2.2 - Sketch the graph of the function and use it to...Ch. 2.2 - Prob. 9ECh. 2.2 - Prob. 10ECh. 2.2 - Prob. 11ECh. 2.2 - Prob. 12ECh. 2.2 - Prob. 13ECh. 2.2 - Sketch the graph of an example of a function f...Ch. 2.2 - Sketch the graph of an example of a function f...Ch. 2.2 - Prob. 16ECh. 2.2 - Prob. 17ECh. 2.2 - Guess the value of the limit (if it exists) by...Ch. 2.2 - Prob. 19ECh. 2.2 - Prob. 20ECh. 2.2 - Prob. 21ECh. 2.2 - Prob. 22ECh. 2.2 - Prob. 23ECh. 2.2 - Prob. 24ECh. 2.2 - Prob. 25ECh. 2.2 - Prob. 26ECh. 2.2 - Prob. 27ECh. 2.2 - Prob. 28ECh. 2.2 - Prob. 29ECh. 2.2 - Prob. 30ECh. 2.2 - Prob. 31ECh. 2.2 - Prob. 32ECh. 2.3 - Prob. 1ECh. 2.3 - Prob. 2ECh. 2.3 - Prob. 3ECh. 2.3 - Prob. 4ECh. 2.3 - Prob. 5ECh. 2.3 - Prob. 6ECh. 2.3 - Prob. 7ECh. 2.3 - (a) What is wrong with the following equation?...Ch. 2.3 - Prob. 9ECh. 2.3 - Evaluate the limit, if it exists. limx3x2+3xx2x12Ch. 2.3 - Prob. 11ECh. 2.3 - Prob. 12ECh. 2.3 - Prob. 13ECh. 2.3 - Prob. 14ECh. 2.3 - Prob. 15ECh. 2.3 - Prob. 16ECh. 2.3 - Prob. 17ECh. 2.3 - Prob. 18ECh. 2.3 - Prob. 19ECh. 2.3 - Prob. 20ECh. 2.3 - Prob. 21ECh. 2.3 - Prob. 22ECh. 2.3 - Prob. 23ECh. 2.3 - Prob. 24ECh. 2.3 - Prob. 25ECh. 2.3 - Prob. 26ECh. 2.3 - Prob. 27ECh. 2.3 - Prob. 28ECh. 2.3 - If 4x 9 f(x) x2 4x + 7 for x 0, find limx4f(x)Ch. 2.3 - If 2x g(x) x4 x2 + 2 for all x, evaluate...Ch. 2.3 - Prove that limx0x4cos2x=0.Ch. 2.3 - Prob. 32ECh. 2.3 - Prob. 33ECh. 2.3 - Prob. 34ECh. 2.3 - Prob. 35ECh. 2.3 - Prob. 36ECh. 2.3 - Prob. 37ECh. 2.3 - Prob. 38ECh. 2.3 - Prob. 39ECh. 2.3 - Prob. 40ECh. 2.3 - Prob. 41ECh. 2.3 - Prob. 42ECh. 2.3 - Prob. 43ECh. 2.3 - Prob. 44ECh. 2.3 - Prob. 45ECh. 2.3 - Prob. 46ECh. 2.3 - Prob. 47ECh. 2.3 - Prob. 48ECh. 2.3 - Prob. 49ECh. 2.3 - Prob. 50ECh. 2.4 - Write an equation that expresses the fact that a...Ch. 2.4 - Prob. 2ECh. 2.4 - (a) From the graph of f , state the numbers at...Ch. 2.4 - Prob. 4ECh. 2.4 - Sketch the graph of a function f that is...Ch. 2.4 - Sketch the graph of a function f that is...Ch. 2.4 - Sketch the graph of a function f that is...Ch. 2.4 - Prob. 8ECh. 2.4 - Prob. 9ECh. 2.4 - Prob. 10ECh. 2.4 - Prob. 11ECh. 2.4 - Prob. 12ECh. 2.4 - Prob. 13ECh. 2.4 - Prob. 14ECh. 2.4 - Prob. 15ECh. 2.4 - Prob. 16ECh. 2.4 - Prob. 17ECh. 2.4 - Prob. 18ECh. 2.4 - Prob. 19ECh. 2.4 - Prob. 20ECh. 2.4 - Prob. 21ECh. 2.4 - Prob. 22ECh. 2.4 - Prob. 23ECh. 2.4 - Prob. 24ECh. 2.4 - Prob. 25ECh. 2.4 - Prob. 26ECh. 2.4 - Prob. 27ECh. 2.4 - Prob. 28ECh. 2.4 - Prob. 29ECh. 2.4 - Prob. 30ECh. 2.4 - Prob. 31ECh. 2.4 - Prob. 32ECh. 2.4 - Prob. 33ECh. 2.4 - Prob. 34ECh. 2.4 - Prob. 35ECh. 2.4 - Prob. 36ECh. 2.4 - Prob. 37ECh. 2.4 - Prob. 38ECh. 2.4 - Prob. 39ECh. 2.4 - Prob. 40ECh. 2.4 - Prob. 41ECh. 2.4 - Prob. 42ECh. 2.4 - Prob. 43ECh. 2.4 - Prob. 44ECh. 2.4 - Prob. 45ECh. 2.4 - Prob. 46ECh. 2.4 - Prob. 47ECh. 2.4 - Prob. 48ECh. 2.4 - Prob. 49ECh. 2.4 - Prob. 50ECh. 2.4 - Prob. 51ECh. 2.4 - Prob. 52ECh. 2.4 - Prob. 53ECh. 2.4 - Prob. 54ECh. 2.4 - Prob. 55ECh. 2.5 - Prob. 1ECh. 2.5 - Prob. 2ECh. 2.5 - For the function f whose graph is given, state the...Ch. 2.5 - For the function g whose graph is given, state the...Ch. 2.5 - Prob. 5ECh. 2.5 - Prob. 6ECh. 2.5 - Prob. 7ECh. 2.5 - Prob. 8ECh. 2.5 - Prob. 9ECh. 2.5 - Sketch the graph of an example of a function f...Ch. 2.5 - Prob. 11ECh. 2.5 - Prob. 12ECh. 2.5 - Prob. 13ECh. 2.5 - Prob. 14ECh. 2.5 - Prob. 15ECh. 2.5 - Prob. 16ECh. 2.5 - Prob. 17ECh. 2.5 - Prob. 18ECh. 2.5 - Prob. 19ECh. 2.5 - Prob. 20ECh. 2.5 - Prob. 21ECh. 2.5 - Prob. 22ECh. 2.5 - Prob. 23ECh. 2.5 - Prob. 24ECh. 2.5 - Prob. 25ECh. 2.5 - Prob. 26ECh. 2.5 - Prob. 27ECh. 2.5 - Prob. 28ECh. 2.5 - Prob. 29ECh. 2.5 - Prob. 30ECh. 2.5 - Prob. 31ECh. 2.5 - Prob. 32ECh. 2.5 - Prob. 33ECh. 2.5 - Prob. 34ECh. 2.5 - Prob. 35ECh. 2.5 - Prob. 36ECh. 2.5 - Prob. 37ECh. 2.5 - Prob. 38ECh. 2.5 - Prob. 39ECh. 2.5 - Prob. 40ECh. 2.5 - Prob. 41ECh. 2.5 - Prob. 42ECh. 2.5 - Prob. 43ECh. 2.5 - Prob. 44ECh. 2.5 - Prob. 45ECh. 2.5 - Prob. 46ECh. 2.5 - Prob. 47ECh. 2.5 - Prob. 48ECh. 2.5 - Prob. 49ECh. 2.5 - Prob. 50ECh. 2.5 - Prob. 51ECh. 2.5 - Prob. 52ECh. 2.5 - Prob. 53ECh. 2.5 - Prob. 54ECh. 2.5 - Prob. 55ECh. 2.5 - Prob. 56ECh. 2.5 - Prob. 57ECh. 2.5 - Prob. 58ECh. 2.6 - A curve has equation y = f(x) (a) Write an...Ch. 2.6 - Graph the curve y = ex in the viewing rectangles [...Ch. 2.6 - Prob. 3ECh. 2.6 - Prob. 4ECh. 2.6 - Find an equation of the tangent line to the curve...Ch. 2.6 - Prob. 6ECh. 2.6 - Prob. 7ECh. 2.6 - Prob. 8ECh. 2.6 - Prob. 9ECh. 2.6 - Prob. 10ECh. 2.6 - Prob. 11ECh. 2.6 - Prob. 12ECh. 2.6 - Prob. 13ECh. 2.6 - If a rock is thrown upward on the planet Mars with...Ch. 2.6 - The displacement (in meters) of a particle moving...Ch. 2.6 - Prob. 16ECh. 2.6 - For the function g whose graph is given, arrange...Ch. 2.6 - Prob. 18ECh. 2.6 - Prob. 19ECh. 2.6 - Prob. 20ECh. 2.6 - Prob. 21ECh. 2.6 - Prob. 22ECh. 2.6 - Prob. 23ECh. 2.6 - Prob. 24ECh. 2.6 - Prob. 25ECh. 2.6 - Prob. 26ECh. 2.6 - Prob. 27ECh. 2.6 - Prob. 28ECh. 2.6 - Prob. 29ECh. 2.6 - Prob. 30ECh. 2.6 - Prob. 31ECh. 2.6 - Prob. 32ECh. 2.6 - Prob. 33ECh. 2.6 - Prob. 34ECh. 2.6 - Prob. 35ECh. 2.6 - Prob. 36ECh. 2.6 - Prob. 37ECh. 2.6 - Prob. 38ECh. 2.6 - Prob. 39ECh. 2.6 - Prob. 40ECh. 2.6 - Prob. 41ECh. 2.6 - Prob. 42ECh. 2.6 - Prob. 43ECh. 2.6 - Prob. 44ECh. 2.6 - Prob. 45ECh. 2.6 - Prob. 46ECh. 2.6 - Prob. 47ECh. 2.6 - Prob. 48ECh. 2.6 - Prob. 49ECh. 2.6 - Prob. 50ECh. 2.6 - The quantity of oxygen that can dissolve in water...Ch. 2.6 - The graph shows the influence of the temperature T...Ch. 2.6 - Prob. 53ECh. 2.6 - Prob. 54ECh. 2.7 - Use the given graph to estimate the value of each...Ch. 2.7 - Prob. 2ECh. 2.7 - Match the graph of each function in (a)(d) with...Ch. 2.7 - Trace or copy the graph of the given function .f....Ch. 2.7 - Trace or copy the graph of the given function .f....Ch. 2.7 - Prob. 6ECh. 2.7 - Trace or copy the graph of the given function .f....Ch. 2.7 - Trace or copy the graph of the given function .f....Ch. 2.7 - Trace or copy the graph of the given function .f....Ch. 2.7 - Trace or copy the graph of the given function .f....Ch. 2.7 - Prob. 11ECh. 2.7 - Prob. 12ECh. 2.7 - Prob. 13ECh. 2.7 - Prob. 14ECh. 2.7 - Prob. 15ECh. 2.7 - Prob. 16ECh. 2.7 - Prob. 17ECh. 2.7 - Prob. 18ECh. 2.7 - Prob. 19ECh. 2.7 - Prob. 20ECh. 2.7 - Prob. 21ECh. 2.7 - Prob. 22ECh. 2.7 - Prob. 23ECh. 2.7 - Prob. 24ECh. 2.7 - Prob. 25ECh. 2.7 - Prob. 26ECh. 2.7 - Prob. 27ECh. 2.7 - Prob. 28ECh. 2.7 - Prob. 29ECh. 2.7 - Prob. 30ECh. 2.7 - Prob. 31ECh. 2.7 - Prob. 32ECh. 2.7 - Prob. 33ECh. 2.7 - Prob. 34ECh. 2.7 - Prob. 35ECh. 2.7 - Prob. 36ECh. 2.7 - Prob. 37ECh. 2.7 - Prob. 38ECh. 2.7 - Prob. 39ECh. 2.7 - Prob. 40ECh. 2.7 - Prob. 41ECh. 2.7 - Prob. 42ECh. 2.7 - Prob. 43ECh. 2.7 - Prob. 44ECh. 2.7 - Prob. 45ECh. 2.7 - Prob. 46ECh. 2.7 - Prob. 47ECh. 2.7 - Prob. 48ECh. 2.7 - Prob. 49ECh. 2.7 - Prob. 50ECh. 2.7 - Prob. 51ECh. 2.7 - Where is the greatest integer function f(x) = [[ x...Ch. 2.7 - Prob. 53ECh. 2.7 - Prob. 54ECh. 2.7 - Prob. 55ECh. 2.8 - Prob. 1ECh. 2.8 - Prob. 2ECh. 2.8 - Prob. 3ECh. 2.8 - Prob. 4ECh. 2.8 - Prob. 5ECh. 2.8 - Prob. 6ECh. 2.8 - Prob. 7ECh. 2.8 - Prob. 8ECh. 2.8 - Prob. 9ECh. 2.8 - Prob. 10ECh. 2.8 - Prob. 11ECh. 2.8 - Prob. 12ECh. 2.8 - Prob. 13ECh. 2.8 - Prob. 14ECh. 2.8 - Prob. 15ECh. 2.8 - Prob. 16ECh. 2.8 - Prob. 17ECh. 2.8 - Prob. 18ECh. 2.8 - Prob. 19ECh. 2.8 - Prob. 20ECh. 2.8 - Prob. 21ECh. 2.8 - Prob. 22ECh. 2.8 - Prob. 23ECh. 2.8 - Prob. 24ECh. 2.8 - Prob. 25ECh. 2.8 - Prob. 26ECh. 2.8 - Prob. 27ECh. 2.8 - Prob. 28ECh. 2.8 - Prob. 29ECh. 2.8 - Prob. 30ECh. 2.8 - Prob. 31ECh. 2.8 - Prob. 32ECh. 2.8 - Prob. 33ECh. 2.8 - Prob. 34ECh. 2 - Explain what each of the following means and...Ch. 2 - Prob. 2RCCCh. 2 - Prob. 3RCCCh. 2 - Prob. 4RCCCh. 2 - Prob. 5RCCCh. 2 - Prob. 6RCCCh. 2 - Prob. 7RCCCh. 2 - Prob. 8RCCCh. 2 - Prob. 9RCCCh. 2 - Prob. 10RCCCh. 2 - Prob. 11RCCCh. 2 - Prob. 12RCCCh. 2 - Prob. 13RCCCh. 2 - Prob. 14RCCCh. 2 - Prob. 15RCCCh. 2 - Prob. 16RCCCh. 2 - Prob. 17RCCCh. 2 - Prob. 1RQCh. 2 - Prob. 2RQCh. 2 - Prob. 3RQCh. 2 - Prob. 4RQCh. 2 - Prob. 5RQCh. 2 - Prob. 6RQCh. 2 - Prob. 7RQCh. 2 - Prob. 8RQCh. 2 - Prob. 9RQCh. 2 - Prob. 10RQCh. 2 - Prob. 11RQCh. 2 - Prob. 12RQCh. 2 - Prob. 13RQCh. 2 - Determine whether the statement is true or false....Ch. 2 - Prob. 15RQCh. 2 - Prob. 16RQCh. 2 - Prob. 17RQCh. 2 - Prob. 18RQCh. 2 - Prob. 1RECh. 2 - Prob. 2RECh. 2 - Prob. 3RECh. 2 - Prob. 4RECh. 2 - Prob. 5RECh. 2 - Prob. 6RECh. 2 - Prob. 7RECh. 2 - Prob. 8RECh. 2 - Prob. 9RECh. 2 - Prob. 10RECh. 2 - Prob. 11RECh. 2 - Prob. 12RECh. 2 - Prob. 13RECh. 2 - Prob. 14RECh. 2 - Prob. 15RECh. 2 - Prob. 16RECh. 2 - Prob. 17RECh. 2 - Prob. 18RECh. 2 - Prob. 19RECh. 2 - Prob. 20RECh. 2 - If 2x 1 f(x) x2 for 0 x 3, find limx1f(x).Ch. 2 - Prob. 22RECh. 2 - Prob. 23RECh. 2 - Prob. 24RECh. 2 - Prob. 25RECh. 2 - Prob. 26RECh. 2 - Prob. 27RECh. 2 - Prob. 28RECh. 2 - Prob. 29RECh. 2 - Prob. 30RECh. 2 - Prob. 31RECh. 2 - Prob. 32RECh. 2 - Prob. 33RECh. 2 - Prob. 34RECh. 2 - Prob. 35RECh. 2 - Prob. 36RECh. 2 - Prob. 37RECh. 2 - Prob. 38RECh. 2 - Prob. 39RECh. 2 - The figure shows the graphs of f, f', and f"....Ch. 2 - Prob. 41RECh. 2 - Prob. 42RECh. 2 - Prob. 43RECh. 2 - Prob. 44RECh. 2 - Prob. 45RECh. 2 - Prob. 46RECh. 2 - Prob. 47RECh. 2 - Prob. 48RECh. 2 - Prob. 1PCh. 2 - Find numbers a and b such that limx0ax+b2x=1.Ch. 2 - Prob. 3PCh. 2 - The figure shows a point P on the parabola y = x2...Ch. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 16PCh. 2 - Prob. 17P
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Derivatives of Trigonometric Functions - Product Rule Quotient & Chain Rule - Calculus Tutorial; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_niP0JaOgHY;License: Standard YouTube License, CC-BY