A device called a railgun uses the magnetic force on currents to launch projectiles at very high speeds. An idealized model of a railgun is illustrated in Figure P24.48. A 1.2V power supply is connected to two
a. What is the current?
b. What are the magnitude and direction of the force on the wire?
c. What will be the wire’s speed after it has slid a distance of 6.0 cm?
Figure P24.48
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
College Physics (10th Edition)
Conceptual Physics (12th Edition)
Essential University Physics: Volume 1 (3rd Edition)
College Physics
Physics (5th Edition)
Physics: Principles with Applications
- A particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forwardUnreasonable results Frustrated by the small Hall voltage obtained in blood flow measurements, a medical physicist decides to increase the applied magnetic field strength to get a 0.500-V output for blood moving at 30.0 cm/s in a 1.50-cm-diameter vessel. (a) What magnetic field strength is needed? (b) What is unreasonable about this result? (C) Which premise is responsible?arrow_forwardA proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude H = 1.00 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle = 45.0 to the linear boundary of' the field as shown in Figure P29.80. (a) Find x, the distance from the point of entry to where the proton will leave the field. (b) Determine . the angle between the boundary and the protons velocity vector as it leaves the field.arrow_forward
- A piece of insulated wire is shaped into a figure eight as shown in Figure P23.12. For simplicity, model the two halves of the figure eight as circles. The radius of the upper circle is 5.00 cm and that of the lower circle is 9.00 cm. The wire has a uniform resistance per unit length of 3.00 Ω/m. A uniform magnetic field is applied perpendicular to the plane of the two circles, in the direction shown. The magnetic field is increasing at a constant rate of 2.00 T/s. Find (a) the magnitude and (b) the direction of the induced current in the wire. Figure P23.12arrow_forwardTwo long, straight wires are parallel and 10 cm apart. One cans a current of 2.0 A, the other a current of 5.0 A. (a) If the two currents flow in opposite directions, what is the magnitude and direction of the force pet unit length of one wire on the other? (b) What is the magnitude and direction of the force per unit length if the currents flow in the same direction?arrow_forwardA device called a railgun uses the magnetic force on currents to launch projectiles at very high speeds. An idealized model of a railgun is illustrated in (Figure 1). A 1.2 V power supply is connected to two conducting rails. A segment of copper wire, in a region of uniform magnetic field, slides freely on the rails. The wire has a 0.85 mΩ resistance and a mass of 4.4 g . Ignore the resistance of the rails. The power supply is switched on. What is the current?arrow_forward
- A device called a railgun uses the magnetic force on currents to launch projectiles at very high speeds. An idealized model of a railgun is illustrated as shown. A 1.2 V power supply is connected to two conducting rails. A segment of copper wire, in a region of uniform magnetic field, slides freely on the rails. The wire has a 0.85 mΩ resistance and a mass of 5.0 g. Ignore the resistance of the rails. When the power supply is switched on,a. What is the current?b. What are the magnitude and direction of the force on the wire?c. What will be the wire’s speed after it has slid a distance of 1.0 mm?arrow_forward6. Rail guns have been suggested for launching projectiles into space without chemical rockets. A tabletop model rail gun (Figure A2.4) consists of two long, parallel, horizontal rails, l= 3.50 cm apart, bridged by a bar of mass m= 3.00 g that is free to slide without friction. The rails and bar have low electric resistance, and the current is limited to a constant I = 24.0 A by a power supply that is far to the left of the figure, so it has no magnetic effect on the bar. Figure A2.4 shows the bar at rest at the midpoint of the rails at the moment the current is established. We wish to find the speed with which the bar leaves the rails after being released from the midpoint of the rails. (a) Find the magnitude of the magnetic field at a distance of 1.75 cm from a single long wire carrying a current of 2.40 A. (b) For purposes of evaluating the magnetic field, model the rails as infinitely long. Using the result of part (a), find the magnitude and direction of the magnetic field at the…arrow_forwardConsider the mass spectrometer shown schematically in Figure P19.36. The electric field between the plates of the velocity selector is 950 V/m, and the magnetic fields in both the velocity selector and the deflection chamber have magnitudes of 0.930 T. Calculate the radius of the path in the system for a singly charged ion with mass m = 2.18 × 10−26 kg. Hint: See Problem 35.arrow_forward
- Question 4. b. Points b and c passing through each resistor in the circuit in the figure potential difference between them. Question 5, a. Define the magnetic field. You can properly describe reinforcements to a magnetic field charge q. b. An electron in a television tube is traveling through the x-axis at a speed of 3x106 m/s. B=0.028 T makes the earth 30° with x in the xy plane. Find the acceleration of the electron. sin30°=0.5 , qe=-1.6x10**C, m, = 9.1x10-31 kg, cos30°=0.86 6=30arrow_forwardA metal strip 5.00 cm long, 0.800 cm wide, and 0.700 mm thick moves with constant velocity through a uniform magnetic field B = 1.00 T directed perpendicular to the strip, as shown in the figure. A potential difference of 4.70 mV is measured between points x and y across the width of the strip. Calculate the speed v (in m/s). Hint: How fast are the electrons moving through the magnetic field? Give your answer as only the numerical value in the SI units specified. e is interpreted as x10^ for use with large or small values; 1.01e2 is interpreted as 1.01 x 102. Barrow_forwardA particle passes through a mass spectrometer as illustrated in Figure P19.36. The electric field between the plates of the velocity selector has a magnitude of 8 250 V/m, and the magnetic fields in both the velocity selector and the deflection chamber have magnitudes of 0.093 1 T. In the deflection chamber the particle strikes a photographic plate 39.6 cm removed from its exit point after traveling in a semicircle. (a) What is the mass-to-charge ratio of the particle? (b) What is the mass of the particle if it is doubly ionized? (c) What is its identity, assuming it’s an element?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill