Concept explainers
A piece of insulated wire is shaped into a figure eight as shown in Figure P23.12. For simplicity, model the two halves of the figure eight as circles. The radius of the upper circle is 5.00 cm and that of the lower circle is 9.00 cm. The wire has a uniform resistance per unit length of 3.00 Ω/m. A uniform magnetic field is applied perpendicular to the plane of the two circles, in the direction shown. The magnetic field is increasing at a constant rate of 2.00 T/s. Find (a) the magnitude and (b) the direction of the induced current in the wire.
Figure P23.12
(a)
The magnitude of the induced current
Answer to Problem 12P
The induced current has a magnitude of
Explanation of Solution
The magnetic field in which the wire is placed is increasing and points into the page. This increasing flux is opposed by a magnetic field out of the page due to the counterclockwise current as a result of induced emf in the upper loop. Similarly, the lower loop also develops an induced emf.
The emf generated in the upper and the lower loops are in opposite directions as the two loops cross over. Write the equation for the net emf generated which is the difference between the emf generated in the two loops.
Here,
Here,
Here,
Here,
Multiply and divide the denominator of equation (V) with the length of the wire
The length of the wire is the sum of the circumferences of the lower loop and the upper loop. The circumference of the lower loop is
Conclusion:
Substitute
Therefore, the induced current has a magnitude of
(b)
The direction of the induced current
Answer to Problem 12P
The induced current is counterclockwise in the lower loop and clockwise in the upper loop.
Explanation of Solution
The lower loop has a larger area and hence the emf. As a result, the change in magnetic flux is also larger in the lower loop.
This increasing flux is opposed by a magnetic field out of the page due to the counterclockwise current as a result of induced emf in the upper loop.
Conclusion:
Therefore, the induced current is counterclockwise in the lower loop and clockwise in the upper loop.
Want to see more full solutions like this?
Chapter 23 Solutions
Principles of Physics: A Calculus-Based Text
- No chatgpt pls will upvotearrow_forwardis 0.3026 a finite numberarrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that system of all three beads is zero. 91 E field lines 93 92 What charge does each bead carry? 91 92 -1.45 = = What is the net charge of the system? What charges have to be equal? μC 2.9 × What is the net charge of the system? What charges have to be equal? μC 93 = 2.9 μС 92 is between and 91 93° The sum of the charge on q₁ and 92 is 91 + 92 = −2.9 μC, and the net charge of thearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning