![Principles of Physics: A Calculus-Based Text](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_largeCoverImage.gif)
Concept explainers
(a)
The rate of deliver of energy
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 50P
The rate of deliver of energy is
Explanation of Solution
The rate of deliver of energy is the power of the battery. Write the equation for the power of the battery.
Here,
Conclusion:
Substitute
Therefore, the rate of deliver of energy by the battery is
(b)
The power delivered to the resistance of the coil
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 50P
The power delivered to the resistance of the coil is
Explanation of Solution
Write the equation for the power delivered to the resistance of the coil.
Here,
Write the equation for the voltage across the resistance.
Here,
Conclusion:
Substitute
Therefore, the power delivered to the resistance of the coil is
(c)
The rate of energy storage
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 50P
The rate of storage of energy is
Explanation of Solution
Consider the inductor being ideal and connect in series with an ideal resistor. According to Kirchhoff’s voltage rule, the algebraic sum of all the voltages in any closed loop in a circuit is zero.
Write the equation for the algebraic sum of the voltages across the coil.
Here,
The rate of storage of energy is the power. Write the equation for the power stored in the inductor.
Here,
Conclusion:
Rearrange equation (VI) and solve for
Substitute
Therefore, the rate of storage of energy in the magnetic field is
(d)
The relation between the three power values
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 50P
The power from the battery is the sum of the power across the internal resistance and the power in the magnetic field.
Explanation of Solution
From equation (II), the battery is delivering energy at a rate of
From equation (V), the power delivered to the resistance of the coil is
From equation (VIII), the rate of storage of energy in the magnetic field is
From the value of different powers given in equation (II), equation (V) and equation (VIII), it can be inferred that
Conclusion:
Therefore, the power delivered from the battery is the sum of the power delivered to the internal resistance and the power stored in the magnetic field.
(e)
The validity of the relation
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 50P
Yes, it is valid in other instants as well
Explanation of Solution
The relation between the powers is that the power from the battery is the sum of the power across the internal resistance and the power in the magnetic field.
At any instant, the power generated by the battery is the sum of the power delivered to the internal resistance and the power stored in the magnetic field.
Conclusion:
Therefore, it is true that the relation between the power is valid at any istant.
(f)
The relation between the power at given instants
(f)
![Check Mark](/static/check-mark.png)
Answer to Problem 50P
The power delivered to the resistance is zero at
Explanation of Solution
From equation (III) and equation (IV), write the equation for the power delivered to the resistance.
Here,
Write the equation for the power delivered by the magnetic field.
Here,
Conclusion:
Immediately after
After some time, the current does not change anymore and hence there is no power being stored in the magnetic field. All the power from the battery is delivered to the resistance of the coil.
Want to see more full solutions like this?
Chapter 23 Solutions
Principles of Physics: A Calculus-Based Text
- help me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forwardThe figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forward
- Which figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)