College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 39P
A square current loop 5.0 cm on each side carries a 500 mA current. The loop is in a 1.2 T uniform magnetic field. The axis of the loop, perpendicular to the plane of the loop, is 30° away from the field direction. What is the magnitude of the torque on the current loop?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule01:16
Chapter 24 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 24 - In Figure Q24.1, suppose the magnet on the right...Ch. 24 - You have a bar magnet whose poles are not marked....Ch. 24 - When you are in the southern hemisphere, does a...Ch. 24 - If you were standing directly at the earths north...Ch. 24 - If you took a sample of magnetotactic bacteria...Ch. 24 - Green turtles use the earths magnetic field to...Ch. 24 - Prob. 7CQCh. 24 - Prob. 8CQCh. 24 - Prob. 9CQCh. 24 - As shown in Figure Q24.10, a uniform magnetic...
Ch. 24 - Prob. 11CQCh. 24 - An electron is moving in a circular orbit in a...Ch. 24 - Prob. 13CQCh. 24 - One long solenoid is placed inside another...Ch. 24 - Prob. 15CQCh. 24 - Prob. 16CQCh. 24 - Prob. 17CQCh. 24 - Prob. 18CQCh. 24 - An electron is moving near a long,...Ch. 24 - Two positive charges are moving in a uniform...Ch. 24 - An electron is moving in a circular orbit in the...Ch. 24 - An electron and a proton are moving in circular...Ch. 24 - A proton moves in a region of uniform magnetic...Ch. 24 - Prob. 24CQCh. 24 - Prob. 25CQCh. 24 - A long wire and a square loop lie in the plane of...Ch. 24 - A solenoid carries a current that produces a field...Ch. 24 - An unmagnetized metal sphere hangs by a thread....Ch. 24 - If a compass is placed above a current-carrying...Ch. 24 - Prob. 31MCQCh. 24 - Figure Q24.32 shows four particles moving to the...Ch. 24 - Four particles of identical charge and mass enter...Ch. 24 - If all of the particles shown in Figure Q24.33 are...Ch. 24 - If two compasses are brought near enough to each...Ch. 24 - Table 24.1 notes that the magnetic field 10 cm...Ch. 24 - Use the data from Table 24.1 to determine at what...Ch. 24 - The magnetic field at the center of a...Ch. 24 - For a particular scientific experiment, it is...Ch. 24 - Prob. 5PCh. 24 - An investigator places a sample 1.0 cm from a wire...Ch. 24 - Although the evidence is weak, there has been...Ch. 24 - Some consumer groups urge pregnant women not to...Ch. 24 - A long wire carrying a 5.0 A current perpendicular...Ch. 24 - The element niobium, which is a metal, is a...Ch. 24 - The small currents in axons corresponding to nerve...Ch. 24 - A solenoid used to produce magnetic fields for...Ch. 24 - Two concentric current loops lie in the same...Ch. 24 - The magnetic field of the brain has been measured...Ch. 24 - Prob. 16PCh. 24 - What is the magnetic field at the center of the...Ch. 24 - Experimental tests have shown that hammerhead...Ch. 24 - Prob. 19PCh. 24 - You have a 1.0-m-long copper wire. You want to...Ch. 24 - In the Bohr model of the hydrogen atom, the...Ch. 24 - A proton moves with a speed of 1.0 107 m/s in the...Ch. 24 - An electron moves with a speed of 1.0 107 m/s in...Ch. 24 - An electromagnetic flowmeter applies a magnetic...Ch. 24 - The aurora is caused when electrons and protons,...Ch. 24 - Problem 24.25 describes two particles that orbit...Ch. 24 - Prob. 27PCh. 24 - Charged particles orbit magnetic field lines in...Ch. 24 - The microwaves in a microwave oven are produced in...Ch. 24 - A cyclotron is used to produce a beam of...Ch. 24 - A medical cyclotron used in the production of...Ch. 24 - Early black-and-white television sets used an...Ch. 24 - Prob. 33PCh. 24 - Prob. 34PCh. 24 - Prob. 35PCh. 24 - A uniform 2.5 T magnetic field points to the...Ch. 24 - Prob. 37PCh. 24 - A current loop in a motor has an area of 0.85 cm2....Ch. 24 - A square current loop 5.0 cm on each side carries...Ch. 24 - People have proposed driving motors with the...Ch. 24 - a. What is the magnitude of the torque on the...Ch. 24 - Prob. 42PCh. 24 - A solenoid is near a piece of iron, as shown in...Ch. 24 - The right edge of the circuit in Figure P24.44...Ch. 24 - Prob. 45GPCh. 24 - An electron travels with speed 1.0 107 m/s...Ch. 24 - Prob. 47GPCh. 24 - A device called a railgun uses the magnetic force...Ch. 24 - Irrigation channels that require regular flow...Ch. 24 - Typical blood velocities in the coronary arteries...Ch. 24 - A power line consists of two wires, each carrying...Ch. 24 - Consider the long rectangular loop in Figure...Ch. 24 - Bats are capable of navigating using the earths...Ch. 24 - At the equator, the earths field is essentially...Ch. 24 - A 1.0-m-long, 1.0-mm-diaraeter copper wire carries...Ch. 24 - An insulated copper wire is wrapped around an iron...Ch. 24 - Assuming the particle in Figure P24.59 is...Ch. 24 - How does the kinetic energy of the particle in...Ch. 24 - Prob. 61MSPPCh. 24 - Next, a particle with the same mass and velocity...Ch. 24 - What is the direction of the magnetic force on a...Ch. 24 - What is the magnitude of the force on this ion? A....Ch. 24 - What magnitude electric field is necessary to...Ch. 24 - The electric field produces a potential...Ch. 24 - In the spectrometer shown in Figure P24.67, do the...Ch. 24 - The moving ions can be thought of as a current...Ch. 24 - Why is it important that the ions have a known...Ch. 24 - A mass spectrometer similar to the one in Figure...
Additional Science Textbook Solutions
Find more solutions based on key concepts
In the light reactions, what is the initial electron donor? Where do the electrons finally end up?
Campbell Biology (11th Edition)
Which coastal area experiences the smallest tidal range? ____________
Applications and Investigations in Earth Science (9th Edition)
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
Choose the best answer to each of the following. Explain your reasoning. How many of the planets orbit the Sun ...
Cosmic Perspective Fundamentals
47. Four solutions of unknown HCl concentration are titrated with solutions of NaOH. The following table lists ...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A circular coil 15.0 cm in radius and composed of 145 tightly wound turns carries a current of 2.50 A in the counterclockwise direction, where the plane of the coil makes an angle of 15.0 with the y axis (Fig. P30.73). The coil is free to rotate about the z axis and is placed in a region with a uniform magnetic field given by B=1.35jT. a. What is the magnitude of the magnetic torque on the coil? b. In what direction will the coil rotate? FIGURE P30.73arrow_forwardAcircularcoiofwireofradius5.Ocmhas2Otums and carries a current of 2.0 A. The coil lies in a magnetic field of magnitude 0.50 T that is directed parallel to the plane of the coil. (a) What is the magnetic dipole moment of the coil? (b) What is the torque on the coil?arrow_forwardIn Figure P22.43, the current in the long, straight wire is I1 = 5.00 A and the wire lies in the plane of the rectangular loop, which carries a current I2 = 10.0 A. The dimensions in the figure are c = 0.100 m, a = 0.150 m, and = 0.450 m. Find the magnitude and direction of the net force exerted on the loop by the magnetic field created by the wire. Figure P22.43 Problems 43 and 44.arrow_forward
- A circular coil of radius 5.0 cm is wound with five turns and carries a current of 5.0 A. If the coil is placed in a uniform magnetic field of strength 5.0 T, what is the maximum torque on it?arrow_forwardA uniform magnetic field of magnitude is directed parallel to the z-axis. A proton enters the field with a velocity v=(4j+3k)106m/s and travels in a helical path with a radius of 5.0 cm. (a) What is the value of B? (b) What is the time required for one trip around the helix? (c) Where is the proton 5.0107s after entering the field?arrow_forwardA toroid with an inner radius of 20 cm and an outer radius of 22 cm is tightly wound with one layer of wire that has a diameter of 0.25 mm. (a) How many turns are there on the toroid? (b) If the current through the toroid windings is 2.0 A, what is the strength of the magnetic field at the center of the toroid?arrow_forward
- A particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forwardA wire carrying a current I is bent into the shape of an exponential spiral, r = e, from = 0 to = 2 as suggested in Figure P29.47. To complete a loop, the ends of the spiral are connected by a straight wire along the x axis. (a) The angle between a radial line and its tangent line at any point on a curve r = f() is related to the function by tan=rdr/d Use this fact to show that = /4. (b) Find the magnetic field at the origin. Figure P29.47arrow_forwardIn Niels Bohr’s 1913 model of the hydrogen atom, the single electron is in a circular orbit of radius 5.29 × 10−11 m and its speed is 2.19 × 106 m/s. (a) What is the magnitude of the magnetic moment due to the electron’s motion? (b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of this magnetic moment vector?arrow_forward
- A magnetic field exerts a torque on each of the current carrying single loops of wire shown in Figure OQ22.12. The loops lie in the xy plane, each carrying the same magnitude current, and the uniform magnetic field points in the positive x direction. Rank the loops by the magnitude of the torque exerted on them by the field from largest to smallest Figure OQ22.12arrow_forwardA proton (charge +e, mass mp), a deuteron (charge +e, mass 2mp), and an alpha particle (charge +2e, mass 4mp) are accelerated from rest through a common potential difference V. Each of the particles enters a uniform magnetic field B, with its velocity in a direction perpendicular to B. The proton moves in a circular path of radius p. In terms of p, determine (a) the radius rd of the circular orbit for the deuteron and (b) the radius r for the alpha particle.arrow_forwardWhy is the following situation impossible? Figure P28.46 shows an experimental technique for altering the direction of travel for a charged particle. A particle of charge q = 1.00 C and mass m = 2.00 1015 kg enters the bottom of the region of uniform magnetic field at speed = 2.00 105 m/s, with a velocity vector perpendicular to the field lines. The magnetic force on the particle causes its direction of travel to change so that it leaves the region of the magnetic field at the top traveling at an angle from its original direction. The magnetic field has magnitude B = 0.400 T and is directed out of the page. The length h of the magnetic field region is 0.110 m. An experimenter performs the technique and measures the angle at which the particles exit the top of the field. She finds that the angles of deviation are exactly as predicted. Figure P28.46arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY