
Concept explainers
(a)
Interpretation: To indicate whether
Concept introduction: In the glycolysis
Pyruvate is the end product in the glycolysis. The production of the fate of pyruvate varies with the nature of the organism and the cellular conditions. The three common fates of pyruvate are as follows:
(a)

Answer to Problem 24.47EP
Carbon dioxide
Explanation of Solution
Reason for correct option:
Under aerobic conditions, pyruvate is converted to
The overall reaction equation for the conversion of pyruvate to
The process of ethanol fermentation takes place in two steps. In step 1, the pyruvate molecule is converted to acetaldehyde by pyruvate decarboxylase enzymes. Carbon dioxide molecule is produced in this step. The chemical reaction is as follows:
In step 2, acetaldehyde is reduced to ethanol by alcohol dehydrogenase enzymes. The chemical reaction is as follows:
The overall ethanol fermentation equation is as follows:
Therefore,
Reason for incorrect option:
The net overall equation for the glycolysis process is as follows:
The overall reaction equation for lactate fermentation is as follows:
(b)
Interpretation: To indicate whether
Concept introduction: In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. Two ATP molecules and NADH reduced coenzymes are produced in the glycolysis pathway.
Pyruvate is the end product in the glycolysis. The production of the fate of pyruvate varies with the nature of the organism and the cellular conditions. The three common fates of pyruvate are as follows:
(b)

Answer to Problem 24.47EP
Pyruvate is oxidized to
Explanation of Solution
Reason for correct option:
Under aerobic conditions, pyruvate is converted to
Reason for incorrect option:
The net overall equation for the glycolysis process is as follows:
The overall ethanol fermentation equation is as follows:
The overall reaction equation for lactate fermentation is as follows:
(c)
Interpretation: To indicate whether ATP is associated with (1) glycolysis, (2) pyruvate oxidation, (3) lactate fermentation, or (4) ethanol fermentation.
Concept introduction: In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. Two ATP molecules and NADH reduced coenzymes are produced in the glycolysis pathway.
Pyruvate is the end product in the glycolysis. The production of the fate of pyruvate varies with the nature of the organism and the cellular conditions. The three common fates of pyruvate are as follows:
(c)

Answer to Problem 24.47EP
A net gain of two ATP molecules occurs when one glucose molecule is converted to two pyruvate molecules through the glycolysis pathway. Therefore, ATP is associated with (1) glycolysis.
Explanation of Solution
Reason for correct choice:
The block diagram to represent an overview of glycolysis is as follows:
The net overall equation for the glycolysis process is as follows:
In step 1 and step 3, one ATP molecule is consumed in each step. In step 7 and step 10, two ATP molecules are produced in each step. Hence, in the glycolysis pathway, two ATP molecules are consumed and four ATP molecules are produced. Therefore, a net gain of two molecules of ATP occurs in the glycolysis pathway.
Reason for incorrect choice:
The overall reaction equation for the oxidation of pyruvate is as follows:
The overall ethanol fermentation equation is as follows:
The overall reaction equation for lactate fermentation is as follows:
ATP is neither consumed nor formed in the pyruvate oxidation, ethanol fermentation, and lactate fermentation. Therefore, ATP is not associated with pyruvate oxidation, ethanol fermentation, and lactate fermentation.
(d)
Interpretation: To indicate whether NADH is associated with (1) glycolysis, (2) pyruvate oxidation, (3) lactate fermentation, or (4) ethanol fermentation.
Concept introduction: In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. Two ATP molecules and NADH reduced coenzymes are produced in the glycolysis pathway.
Pyruvate is the end product in the glycolysis. The production of the fate of pyruvate varies with the nature of the organism and the cellular conditions. The three common fates of pyruvate are as follows:
(d)

Answer to Problem 24.47EP
In the glycolysis process and oxidation of pyruvate, NADH is formed as a product while it is encountered as a reactant in lactate fermentation and ethanol fermentation. Therefore, NADH is associated with (1) glycolysis, (2) pyruvate oxidation, (3) lactate fermentation, and (4) ethanol fermentation.
Explanation of Solution
The net overall equation for the glycolysis process is as follows:
The overall reaction equation for the conversion of pyruvate to
The overall ethanol fermentation equation is as follows:
In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. The overall reaction equation for the conversion of pyruvate to lactate is as follows:
NADH is produced in the glycolysis process and pyruvate oxidation while it is consumed in ethanol fermentation and lactate fermentation. Therefore, NADH is associated with all four processes.
Want to see more full solutions like this?
Chapter 24 Solutions
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
- Select/ Match the correct letter from the image below for the IUPAC names given below: A B C D 3 E F G H K L Part 1. 4-methylheptane For example.mmmm Answer Letter H _for part 1 Part 2. 2,4-dimethylhexane Part 3. 2,3-dimethylpentane Part 4. 2,2-dimethylhexane Part 5. 2-ethyl-1,1,3,3-tetramethylcyclopentane Part 6. 3-ethyl-2-methylpentanearrow_forwardCan u show the process as to how to get these?arrow_forwardSketch the expected 'H NMR spectra for the following compound. Label all of the H's in the structure and the corresponding signal for the spectra you sketch. Make sure you include the integration value and the splitting pattern for each signal Indicate how many signals you would expect in the 13C NMRarrow_forward
- Use IUPAC naming rules to name the following hydrocarbon compounds: CH2-CH3 | a) CH-CH-CH2-CH-CH-CH3 b) | CH2 CH3 | CH3 CH3 \ / C=C H 1 H CH2-CH3 c) d) CH=C-CH3 e) CH3-CH2-CH2-CH=CH-CH3 f) CH2=CH-CH2-CH=CH-CH3 g) CH3-CH2-C = C-CH2-CH3 h)arrow_forwardQ5 Name the following : a. b. C. d. e.arrow_forward25. Predict the major product of the following reaction. 1 equivalent of each of the starting materials was used. H₂C CH3 CH3 H3C H3C H3C. CH2 + H3C. heat CH3 CH H.C. CH3 H.C H.C CH3 CH CH3 CH3 A B C Earrow_forward
- Find chemical structures based on the below information. a) Chemical formula C6H8O Compound is aromatic plus has two 1H NMR peaks that integrated for 3 each that are singlets (it could have more peaks in the 1H NMR b) Chemical Formula: C6H100 Compounds is conjugated 'H NMR has a signal that integrates for 6 and is a doublet IR spectra has a signal at 1730 cm-1arrow_forwardJaslev Propose a synthesis of the following starting from benzene and any other reagents and chemicals. No mechanisms are required. Indicate the condition for each step plus the major product for each step. More than two steps are required. Step 1 Step 2 مہد Brarrow_forwardPart C: The line formula for another branched alkane is shown below. i. In the IUPAC system what is the root or base name of this compound? ii. How many alkyl substituents are attached to the longest chain? iii. Give the IUPAC name for this compound.arrow_forward
- Part D: Draw the Structural Formula for 4-ethyl-2-methylhexane Part E. Draw the Structural Formula for 1-chloro-3,3-diethylpentane (Chloro = Cl)arrow_forwardPart B: The line formula for a branched alkane is shown below. a. What is the molecular formula of this compound? Number of C. Number of H b. How many carbon atoms are in the longest chain? c. How many alkyl substituents are attached to this chain?arrow_forward24. What is the major product for the following reaction? Mg J. H.C CH H,C- Then H₂O OH Br C HO E HO H.C CH H.C- CH₂ CH₂ All of these are possiblearrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




