
Concept explainers
(a)
Interpretation: To indicate whether B vitamin thiamin is involved in (1) glycolysis, (2) gluconeogenesis, (3) lactate fermentation, or (4) glycogenolysis as a cofactor.
Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.
Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.
In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to
In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to
Niacin
(a)

Answer to Problem 24.117EP
None of the given processes includes B vitamin thiamin as a cofactor. B vitamin thiamin is needed as a cofactor in the conversion of pyruvate to
Explanation of Solution
B vitamin thiamin is encountered in the form of thiamin pyrophosphate (TPP) in the carbohydrate metabolism. TPP in not involved in glycolysis, gluconeogenesis, lactate fermentation, and glycogenolysis. Hence, none of the given processes includes vitamin thiamin as a cofactor.
Pyruvate is converted to
Pyruvate dehydrogenase complex contains three different enzymes. Each enzyme contains numerous subunits. The overall reaction requires FAD,
(b)
Interpretation: To indicate B vitamin riboflavin is involved in (1) glycolysis, (2) gluconeogenesis, (3) lactate fermentation, or (4) glycogenolysis as a cofactor.
Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.
Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.
In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to
In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to
Niacin
(b)

Answer to Problem 24.117EP
None of the given processes includes vitamin riboflavin as a cofactor. B vitamin riboflavin is needed as a cofactor in the citric acid cycle.
Explanation of Solution
B vitamin riboflavin is encountered in the form of FAD(Flavin adenine dinucleotide) in the carbohydrate metabolism. FAD in not involved in glycolysis, gluconeogenesis, lactate fermentation, and glycogenolysis. Hence, none of the given processes includes B vitamin riboflavin as a cofactor.
The citric acid cycle is the third stage of the biochemical energy production process. The cycle includes the reactions in which the acetyl part of acetyl CoA is oxidized and leads to the formation of carbon dioxide and
(c)
Interpretation: To indicate whether B vitamin pantothenic acid is involved in (1) glycolysis, (2) gluconeogenesis, (3) lactate fermentation, or (4) glycogenolysis as a cofactor.
Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.
Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.
In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to
In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to
Niacin
(c)

Answer to Problem 24.117EP
None of the given processes includes B vitamin pantothenic acid as a cofactor. B vitamin pantothenic acid is needed as a cofactor in the conversion of pyruvate to
Explanation of Solution
B vitamin pantothenic acid is encountered in the form of
Pyruvate is converted to
Pyruvate dehydrogenase complex contains three different enzymes. Each enzyme contains numerous subunits. The overall reaction requires FAD,
(d)
Interpretation: To indicate
Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.
Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.
In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to
In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to
Niacin

Answer to Problem 24.117EP
Explanation of Solution
Want to see more full solutions like this?
Chapter 24 Solutions
General, Organic, and Biological Chemistry Seventh Edition
- 1. Show the steps necessary to make 2-methyl-4-nonene using a Wittig reaction. Start with triphenylphosphine and an alkyl halide. After that you may use any other organic or inorganic reagents. 2. Write in the product of this reaction: CH3 CH₂ (C6H5)₂CuLi H₂O+arrow_forward3. Name this compound properly, including stereochemistry. H₂C H3C CH3 OH 4. Show the step(s) necessary to transform the compound on the left into the acid on the right. Bri CH2 5. Write in the product of this LiAlH4 Br H₂C OHarrow_forwardWhat are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forward
- What are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forwardA block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forwardPotential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forward
- Can u help me figure out the reaction mechanisms for these, idk where to even startarrow_forwardHi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forwardHi, I need your help i dont know which one to draw please. I’ve attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward
- 5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forwardIndicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. CO₂C2H5 + CH3-NH-NH,arrow_forwardDraw the major product of this reaction N-(cyclohex-1-en-1-yl)-1-(pyrrolidino) reacts with CH2=CHCHO, heat, H3O+arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




