Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 100P
An alpha particle (which has two protons) is seat directly toward a target nucleus containing 92 protons. The alpha particle has an initial kinetic energy of 0.48 pJ. What is the least center-to-center distance the alpha particle will be from the target nucleus, assuming the nucleus does not move?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Now you have a nucleus with 20 protons at x = 7.9 Angstroms on the x-axis. How much work would it take to bring in ANOTHER nucleus with 4 protons from 1 m away and place it at y = 7.0 Angstroms on the y-axis?
Question 10 options:
A
50.4 eV
B
100.8 eV
C
-8.2 eV
D
109.0 eV
10) Now you have a nucleus with 13 protons at x = 6.2 Angstroms on the x-axis. How much work would it take to bring in ANOTHER nucleus with 7 protons from 1 m away and place it at y = 8.0 Angstroms on the y-axis?
70.0 eV
116.7 eV
-12.6 eV
129.3 eV
In Rutherford's famous scattering experiments that led
to the planetary model of the atom, alpha particles (having
charges of +2e and masses of 6.64 x 10-27 kg) were fired
toward a gold nucleus with charge +79e. An alpha particle,
Chapter 24 Solutions
Fundamentals of Physics Extended
Ch. 24 - Figure 24-24 shows eight particles that form a...Ch. 24 - Figure 24-25 shows three sets of cross sections of...Ch. 24 - Figure 24-26 shows four pairs of charged...Ch. 24 - Figure 24-27 gives the electric potential V as a...Ch. 24 - Figure 24-28 shows three paths along which we can...Ch. 24 - Figure 24-29 shows four arrangement? of charged...Ch. 24 - Figure 24-30 shows a system of three charged...Ch. 24 - In the situation of Question 7, is the work done...Ch. 24 - Figure 24-26 shows four pairs of charged particles...Ch. 24 - a In Fig. 24-31a, what is the potential at point P...
Ch. 24 - Figure 24-32 shows a thin, uniformly charged rod...Ch. 24 - In Fig. 24-33, a particle is to be released at...Ch. 24 - SSM A particular 12 V car battery can send a total...Ch. 24 - The electric potential difference between the...Ch. 24 - Suppose that in a lightning flash the potential...Ch. 24 - Two large, parallel, conducting plates are 12 cm...Ch. 24 - SSM An infinite nonconducting sheet has a surface...Ch. 24 - When an electron moves from A to B along an...Ch. 24 - The electric field in a region of space has the...Ch. 24 - A graph of the x component of the electric field...Ch. 24 - An infinite nonconducting sheet has a surface...Ch. 24 - GO Two uniformly charged, infinite, nonconducting...Ch. 24 - A nonconducting sphere has radius R = 2.31 cm and...Ch. 24 - As a space shuttle moves through the dilute...Ch. 24 - What are a the change and b the charge density on...Ch. 24 - Consider a particle with charge q = 1.0 C, point A...Ch. 24 - SSM ILW A spherical drop of water carrying a...Ch. 24 - GO Figure 24-37 shows a rectangular array of...Ch. 24 - GO In Fig.24-33, what is the net electric...Ch. 24 - GO Two charged particles are shown in Fig. 24-39a....Ch. 24 - In Fig. 24-40, particles with the charges q1 = 5e...Ch. 24 - Two particles, of charges q1 and q2, are separated...Ch. 24 - ILW The ammonia molecule NH3 has a permanent...Ch. 24 - In Fig. 24-41a, a particle of elementary charge e...Ch. 24 - a Figure 24-42a shows a nonconducting rod of...Ch. 24 - In Fig. 21-43, a plastic rod having a uniformly...Ch. 24 - A plastic rod has been bent into a circle of...Ch. 24 - GO Figure 24-45 shows a thin rod with a uniform...Ch. 24 - In Fig. 24-46, three thin plastic rods form...Ch. 24 - GO Figure 24-47 shows a thin plastic rod of length...Ch. 24 - In Fig. 24-48, what is the net electric potential...Ch. 24 - GO The smiling face of Fig. 24-49 consists of...Ch. 24 - SSM WWW A plastic disk of radius R = 64.0 cm is...Ch. 24 - GO A non uniform linear charge distribution given...Ch. 24 - GO The thin plastic rod shown in Fig. 24-47 has...Ch. 24 - Two large parallel metal plates are 1.5 cm apart...Ch. 24 - The electric potential al points in an xy plane is...Ch. 24 - The electric potential V in the space between two...Ch. 24 - SSM What is the magnitude of the electric field at...Ch. 24 - Figure 24-47 shows a thin plastic rod of length L...Ch. 24 - An electron is placed in an xy plane where I he...Ch. 24 - GO The thin plastic rod of length L = 10.0 cm in...Ch. 24 - A particle of charge 7.5 C is released from rest...Ch. 24 - a What is the electric potential energy of two...Ch. 24 - How much work is required to set up the...Ch. 24 - In Fig. 24-53, seven charged particles are fixed...Ch. 24 - ILW A particle of charge q is fixed at point P,...Ch. 24 - A charge of 9.0 nC is uniformly distributed around...Ch. 24 - GO What is the escape speed for an electron...Ch. 24 - A thin, spherical conducting shell of radius R is...Ch. 24 - GO Two electrons are fixed 2.0 cm apart. Another...Ch. 24 - In Fig. 24-54, how much work must we do to bring a...Ch. 24 - GO In the rectangle of Fig. 24-55, the sides have...Ch. 24 - Figure 24-56a shows an electron moving along an...Ch. 24 - Two tiny metal sphere? A and B, mass mA = 5.00 g...Ch. 24 - GO A positron charge e, mass equal to the electron...Ch. 24 - An electron is projected with an initial speed of...Ch. 24 - Particle 1 with a charge of 5.0 C and particle 2...Ch. 24 - SSM Identical 50 C charges are fixed or an x axis...Ch. 24 - GO Proton in a well. Figure 24-59 shows electric...Ch. 24 - In Fig. 24-60, a charged particle either an...Ch. 24 - In Fig. 24-61a, we move an electron from an...Ch. 24 - Suppose N electrons can be placed in either of two...Ch. 24 - Sphere 1 with radius R1 has positive charge q....Ch. 24 - SSM WWW Two metal spheres, each of radius 3.0 cm,...Ch. 24 - A hollow metal sphere has a potential of 400 V...Ch. 24 - SSM What is the excess charge on a conducting...Ch. 24 - Two isolated, concentric, conducting spherical...Ch. 24 - A metal sphere of radius 15 cm has a net charge of...Ch. 24 - Here are the charges and coordinates of two...Ch. 24 - SSM A long, solid, conducting cylinder has a...Ch. 24 - The chocolate crumb mystery. This story begins...Ch. 24 - SSM Starting from Eq. 24-30, derive an expression...Ch. 24 - The magnitude E of an electric field depends on...Ch. 24 - a If an isolated conducting sphere 10 cm in radius...Ch. 24 - Three particles, charge q1 = 10 C, q2 = 20 C, and...Ch. 24 - An electric field of approximately 100 V/m is...Ch. 24 - A Gaussian sphere of radius 4.00 cm is centered or...Ch. 24 - In a Millikan oil-drop experiment Module 22-6, a...Ch. 24 - Figure 24-63 shows three circular, nonconducting...Ch. 24 - An electron is released from rest on the axis of...Ch. 24 - Figure 24-64 shows a ring of outer radius R = 13.0...Ch. 24 - GO Electron in a well. Figure 24-65 shows electric...Ch. 24 - a If Earth had a uniform surface charge density of...Ch. 24 - In Fig. 24-66, point P is at distance d1 = 4.00 m...Ch. 24 - A solid conducting sphere of radius 3.0 cm has a...Ch. 24 - In Fig. 24-67, we move a particle of charge 2e in...Ch. 24 - Figure 24-68 shows a hemisphere with a charge of...Ch. 24 - SSM Three 0.12 C charges form an equilateral...Ch. 24 - Two charges q = 2.0 C are fixed a distance d = 2.0...Ch. 24 - Initially two electrons are fixed in place with a...Ch. 24 - A particle of positive charge Q is fixed at point...Ch. 24 - Two charged, parallel, flat conducting surfaces...Ch. 24 - In Fig. 24-70, point P is at the center of the...Ch. 24 - SSM A uniform charge of 16.0 C is on a thin...Ch. 24 - Consider a particle with charge q = 150 108 C,...Ch. 24 - SSM A thick spherical shell of charge Q and...Ch. 24 - A charge q is distributed uniformly throughout a...Ch. 24 - SSM A solid copper sphere whose radius is 1.0 cm...Ch. 24 - In Fig. 24-71, a metal sphere with charge q = 5.00...Ch. 24 - a Using Eq. 24-32, show that the electric...Ch. 24 - An alpha particle which has two protons is seat...Ch. 24 - In the quark model of fundamental particles, a...Ch. 24 - A charge of 1.50 108 C lies on an isolated metal...Ch. 24 - In Fig. 24-72, two particles of charges q1 and q2...
Additional Science Textbook Solutions
Find more solutions based on key concepts
35. Consider the reaction.
The graph shows the concentration of Br2 as a function of time.
a. Use the g...
Chemistry: Structure and Properties (2nd Edition)
4. The lipid portion of a typical bilayers is about 30 A0 thick.
a. Calculate the minimum number of residues in...
Biochemistry: Concepts and Connections (2nd Edition)
Assume that a DRT value for autoclaving a culture is 1.5 minutes. How long would it take to kill all the cells ...
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
15. The three masses shown in FIGURE EXI2.15 are connected by massless, rigid rods.
a. Find the coordinates of...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Choose the best answer to each of the following. Explain your reasoning. Based on computer models, when is plan...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An alpha particle (charge +3.20 x 10^-19C, mass 6.64 x10^-27kg) is initially 5.2cm away from a fixed golden nucleus (charge +1.36 x10^-17C, mass 3.29x10^-25kg), and moving toward the nucleus with a speed of 8.1x10^5m/s. How close to the nucleus does te alpha particle get? Note: the nucleus diameter is approximately 10^-14m and the alpha particles's is 10^-15marrow_forwardA proton moving in the positive x direction at 4.3 Mm/s collides with a nucleus. The collision lasts 0.12 fs, and the average impulsive force is 42 i + 17 j micro - Newton. A) Find the velocity of the proton after the collision. B) Through what angle has the proton's motion been deflected?arrow_forwardFind the speed an alpha particle requires to come within 3.9 × 10¬1ª m of a gold nucleus. Coulomb's constant is 8.99 × 10º N · m² /C², the charge on an electron is 1.6 × 10-19 and the mass of the alpha particle is 6.64 × 10–27 kg. Answer in units of m/s. C, Find the energy of the alpha particle. Answer in units of MeV.arrow_forward
- Needs Complete typed solution with 100 % accuracy.arrow_forwardAn alpha particle (Z = 2, mass 6.64 x 10-27 kg) approaches to within 1.60 × 10-14 m of a carbon nucleus (Z = 6). (a) What is the maximum Coulomb force on the alpha particle? 10.8 (b) What is the acceleration of the alpha particle at this time? 1.627e27 m/s? (c) What is the potential energy of the alpha particle at the same time? 1.6 Apply the expression for the electrostatic potential energy of two point charges. MeVarrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rh has charge -Q. srb The electric field E at a radial distance r from the central axis is given by the function: E = ge/d0 + B/r + bo where alpha (a)., beta (8), ao and bo are constants. Find an expression for its capacitance. First, let us derive the potential difference Voh between the two conductors. The potential difference is related to the electric field by: Edr = - Edr Calculating the antiderivative or indefinite integral, Vab = (-aageao + B + bo By definition, the capacitance Cis related to the charge and potential difference by: C = Evaluating with the upper and lower limits of integration for Vab, then simplifying: C = Q/( (e""b/ao - eTala0) + ß In ) + bo (arrow_forward
- Consider an object of mass 56.6 kg. Assume that it s made up of equal numbers of protons, neutrons, and electrons. How many protons does this object contain? Question 1 options: 8.45E+27 1.69E+28 3.38E+28 6.76E+28arrow_forwardA certain atom has 76 protons. Assume that the nucleus is a sphere with radius 6.63 fm and with the charge of the protons uniformly spread through the sphere. At the nucleus surface what are (a) the magnitude and (b) direction (radially inward or outward) of the electric field produced by the protons? Units (a) Number (b)arrow_forwardQUESTION 1 Consider an object of mass 76.4 kg. Assume that it s made up of equal numbers of protons, neutrons, and electrons. How many protons does this object contain? 4.58E+28 9.16E+28 1.15E+28 2.29E+28 QUESTION 2 This time your object has a mass of 12.3 kg. Now imagine taking all the protons out of the object and stuffing them into a box. Also take all the electrons out of the object and stuff them in a second box. How much charge is contained in the box with all the protons? 5.89E+08 C 1.18E+09 C 2.36E+09 C 2.95E+08 C QUESTION 3 This time your object has a mass of 62.7 kg. You separate the protons and electrons into two boxes like in the previous question. You place the boxes at a distance of 68 m apart from one another. How much force attracts the two boxes to one another? 1.75E+25 N 3.50E+25 N 7.00E+25 N 8.75E+24 N QUESTION 4 Similar…arrow_forward
- A proton accelerator is operating at 4.5mA. How many nuclei are emitted in the beam every second? (1C=6.24E18 electron charges.)arrow_forwardany speed up to 8.08 m/s (а) 8.33 (b) 9.15 N toward the nucleus m/s inwardarrow_forwardNow you have a nucleus with 17 protons at x = 5.8 Angstroms on the x-axis. How much work would it take to bring in ANOTHER nucleus with 14 protons from 1 m away and place it at y = 8.0 Angstroms on the y-axis?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY