Concept explainers
(a)
The distance to M51 in
Answer to Problem 7Q
Distance in
Explanation of Solution
Given data Distance modulus of the supernova 19941 in M51 =
Distance modulus of the planetary nebulae in M51 =
Distance to Andromeda Galaxy from Earth =
Formula used
Calculation
Conclusion Distance in
(b)
The distance in
Answer to Problem 7Q
Distance in
Explanation of Solution
Given data Distance modulus of the supernova 19941 in M51 =
Distance modulus of the planetary nebulae in M51 =
Distance to Andromeda Galaxy from Earth =
Formula used
Calculation
Conclusion
Distance in
(c)
The difference between the calculated distances in part (a) and part (b).
Answer to Problem 7Q
Difference between the 2 calculated values =
Explanation of Solution
Given data Distance modulus of the supernova 19941 in M51 =
Distance modulus of the planetary nebulae in M51 =
Distance to Andromeda Galaxy from Earth =
Calculation
Conclusion
(d)
Compares differencecalculated value in part c, with the
Answer to Problem 7Q
Explanation of Solution
Given data Distance modulus of the supernova 19941 in M51 =
Distance modulus of the planetary nebulae in M51 =
Distance to Andromeda Galaxy from Earth =
Calculation
Conclusion
It shows that when the distance increase, the error associated with the reading increases as well.
Want to see more full solutions like this?
Chapter 23 Solutions
Universe: Stars And Galaxies
- The nearest neutron star (a collated star made primarily of neutrons) is about 3.00 1018 m away from Earth. Given that the Milky Way galaxy (Fig. P1.81) is roughly a disk of diameter 1021 m and thickness 1019 m, estimate the number of neutron stars in the Milky Way to the nearest order of magnitude. Figure P1.81arrow_forwardThe best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forwardAn astronomical image shows two objects that have the same apparent magnitude, i.e., the same brightness. However, spectroscopic follow up observations indicate that while one is a star that is within our galaxy, at a distance dgal away, and has the same luminosity as the Sun, the other is a quasar and has 100x the luminosity of the entire Milky Way galaxy. What is the distance to the quasar? (You may assume, for this rough calculation, that the Milky Way has 1011 stars and that they all have the luminosity as the Sun.) Give your response in Mpc. Value: dgal = 49 pcarrow_forward
- a) Calculate the period of the solar system's orbit around the Milky Way. Assume that we are 8.5 kpc from the galactic center and assume that the mass of the Milky Way interior to our orbit is ~ 10¹¹ solar masses. Alpha Centauri is a multiple star system only 1.34 parsecs away. The apparent magnitudes of the two main stars are: a Cen A: my = +0.01; a Cen B: my = +1.33. b) Calculate the ratio of the flux we receive in the V filter from a Cen A to the flux we receive from a Cen B. c) Calculate the absolute magnitude My of a Cen B.arrow_forwardThe Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot = 250 km s−1. Using Kepler’s 3rd Law, determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass.arrow_forwardQuestion A1 a) The Large Magellanic Cloud (LMC) is a galaxy in the vicinity of the Milky Way. It is at a distance of 50 kpc, and has a size across of 9.86 kpc. Consider a star similar to Vega (absolute magnitude M = 0.58) which is at the edge of the LMC as seen on the sky. What is its apparent magnitude? Show your calculation. b) A second similar star is observed near the centre of the LMC as seen on the sky with an observed apparent magnitude of m = 20.3. Is this consistent with the star being a member of the LMC? Explain your reasoning. c) An observational study has derived a map of the extinction Ay across the LMC, and shown that its average value is 0.38, with a standard deviation of 0.57. For the star discussed in part (b), if extinction is taken into account, does your conclusion about the star's membership of the LMC change? Explain your reasoning. You may assume that the star may suffer the full (positive) range of extinction found in the study of the LMC. d) Which other…arrow_forward
- Please answer within 90 minutes.arrow_forwardThe surface mass density of the disk of a galaxy is given in the provided image. Σ0 is the central surface density and Rd is the scale-length, and they are both constant. Find the total mass (M) of the disk in terms of Σ0 and Rd.arrow_forwardIf the distance to Star C is 16 pc, what is the value of its distance modulus (m-M)?arrow_forward
- (a) Estimate the height (z) above or below the Galactic plane for the globular cluster M13 (1,b = 59°, 40.9°) and the Orion Nebula (1,b = 209°, -19.4°). M13 and the Orion Nebula are 7 kpc and 450 pc away from Earth respectively. (b) To which components of the Galaxy do these objects probably belong? Explain your answers.arrow_forwardA galaxy with a spherically symmetric distribution of matter has a mass density profile of the type p(r) ∞ 1/r, where r is the radial coordinate from the centre of the galaxy. To what type of circular velocity (r) does this correspond? Select one: a. (r) O b. c. O d. (r) ~ r (r) ~ √r (r): = constantarrow_forwardhelparrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning