Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 36Q
To determine
The definition of void and the information that void gives about the large structure of the universe.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Describe what is meant by Olbers’ paradox. Explain how it is solved by our modern understanding of the Universe.
What is dark matter, and what evidence exists for it? What effect does dark energy have on the expansion of the universe?
What is the the steady-state theory of the universe, and why was it abandoned? What theory do we recognize today for explanation of the creation of the universe?
Chapter 23 Solutions
Universe: Stars And Galaxies
Ch. 23 - Prob. 1QCh. 23 - Prob. 2QCh. 23 - Prob. 3QCh. 23 - Prob. 4QCh. 23 - Prob. 5QCh. 23 - Prob. 6QCh. 23 - Prob. 7QCh. 23 - Prob. 8QCh. 23 - Prob. 9QCh. 23 - Prob. 10Q
Ch. 23 - Prob. 11QCh. 23 - Prob. 12QCh. 23 - Prob. 13QCh. 23 - Prob. 14QCh. 23 - Prob. 15QCh. 23 - Prob. 16QCh. 23 - Prob. 17QCh. 23 - Prob. 18QCh. 23 - Prob. 19QCh. 23 - Prob. 20QCh. 23 - Prob. 21QCh. 23 - Prob. 22QCh. 23 - Prob. 23QCh. 23 - Prob. 24QCh. 23 - Prob. 25QCh. 23 - Prob. 26QCh. 23 - Prob. 27QCh. 23 - Prob. 28QCh. 23 - Prob. 29QCh. 23 - Prob. 30QCh. 23 - Prob. 31QCh. 23 - Prob. 32QCh. 23 - Prob. 33QCh. 23 - Prob. 34QCh. 23 - Prob. 35QCh. 23 - Prob. 36QCh. 23 - Prob. 37QCh. 23 - Prob. 38QCh. 23 - Prob. 39QCh. 23 - Prob. 40QCh. 23 - Prob. 41QCh. 23 - Prob. 42QCh. 23 - Prob. 43QCh. 23 - Prob. 44QCh. 23 - Prob. 45QCh. 23 - Prob. 46QCh. 23 - Prob. 47QCh. 23 - Prob. 48QCh. 23 - Prob. 49QCh. 23 - Prob. 50QCh. 23 - Prob. 51QCh. 23 - Prob. 52QCh. 23 - Prob. 53QCh. 23 - Prob. 54QCh. 23 - Prob. 55QCh. 23 - Prob. 56QCh. 23 - Prob. 57Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What evidence shows that the Universe is expanding? What evidence shows that the Universe began with a Big Bang?arrow_forwardWhat does it mean to say that the universe is expanding? What is expanding? For example, is your astronomy classroom expanding? Is the solar system? Why or why not?arrow_forwardHow does the darkness of the night sky tell you something important about the age and size of the observable universe?arrow_forward
- What does the term Hubble time mean in cosmology, and what is the current best calculation for the Hubble time?arrow_forwardIn which type of model universe is space-time infinite in extent and open? List all possibilities.arrow_forwardWhat is the fate of a closed universe? In what case would that not be true?arrow_forward
- What percentage of matter is ordinary matter? What percentage is dark matter? What makes up the rest of the Universes density?arrow_forwardAstronomers frequently say that "there are more stars in the universe than there are grains of sand on all the beaches on the earth". Given that a typical grain of sand is about 0.5 – 1.0 mm in diameter, estimate the number of grains of sand on all the earth's beaches. The diameter of the Earth is 12,742 km. a) About 1011 b) About 1016 c) About 1021. 6. Assume that a typical galaxy contains about 200 billion stars and that there are more than 150 billion galaxies in the known universe. Estimate the total number of stars in the universe. b) About 1022 a) About 1010 c) About 1016. 7. Compare the values of the number of grains of sand in all earth's beaches (from problem 5) with the number of stars in the universe (from problem 6) – which is greater? a) Number of sand grains b) number of stars c) they are about the same.arrow_forwardWhat was the lowest temperature for photons to be able to produce 0 particles in the early universe? Approximately what time was this? Let kT = mc2 and use Figure. Use the mean value of the distributionarrow_forward
- 1. The current (critical) density of our universe is pe = 10-26kg/m³. Assume the universe is filled with cubes with equal size that each contain one person of m = 100kg. What would the length of the side of such a cube have to be in order to give the correct critical density? How many hydrogen atoms would you need in a box of 1 m³ to reach the critical density? The matter we know, which consists mostly of hydrogen, constitutes only 4.8% of the current critical energy density of our universe. So how many hydrogen atoms are actually in a box of 1 m3 in our universe? Deep space is very empty and a much better vacuum than we can obtain on earth in a laboratory.arrow_forwardIf all the distant galaxies are moving away from us, explain why we are not at the center of the universe.arrow_forwardState three pieces of evidence that support the idea that the Universe began in a hot Big Bang, and explain how each piece of evidence supports the hot Big Bang model. Describe the ob- servational evidence that supports the idea that the Universe is pervaded by Dark Energy, and explain why each piece of evidence you cite supports the Dark Energy model.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY