Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 45Q
To determine
The favored hypothesis for what dark matter is made of and the properties that these particles have.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1.2
1.0
0.8
0.6
Cosmic background
data from COBE
0.4
0.2
0.0
0.5
10
Wavelength A in mm
c)
Background (CMB) undertaken by the COBE satellite. Use this diagram to estimate the
current temperature of the CMB. Based on your estimate, what would the temperature of
the CMB have been at a redshift of z = 5000?
The left hand diagram above shows the results from observations of the Cosmic Microwave
Radiated Intensity per Unit Wavelength
(16° Watts/m per mm)
an introduction on what is the event horizon of a black holes?
What are the evidences for dark matter?
Chapter 23 Solutions
Universe: Stars And Galaxies
Ch. 23 - Prob. 1QCh. 23 - Prob. 2QCh. 23 - Prob. 3QCh. 23 - Prob. 4QCh. 23 - Prob. 5QCh. 23 - Prob. 6QCh. 23 - Prob. 7QCh. 23 - Prob. 8QCh. 23 - Prob. 9QCh. 23 - Prob. 10Q
Ch. 23 - Prob. 11QCh. 23 - Prob. 12QCh. 23 - Prob. 13QCh. 23 - Prob. 14QCh. 23 - Prob. 15QCh. 23 - Prob. 16QCh. 23 - Prob. 17QCh. 23 - Prob. 18QCh. 23 - Prob. 19QCh. 23 - Prob. 20QCh. 23 - Prob. 21QCh. 23 - Prob. 22QCh. 23 - Prob. 23QCh. 23 - Prob. 24QCh. 23 - Prob. 25QCh. 23 - Prob. 26QCh. 23 - Prob. 27QCh. 23 - Prob. 28QCh. 23 - Prob. 29QCh. 23 - Prob. 30QCh. 23 - Prob. 31QCh. 23 - Prob. 32QCh. 23 - Prob. 33QCh. 23 - Prob. 34QCh. 23 - Prob. 35QCh. 23 - Prob. 36QCh. 23 - Prob. 37QCh. 23 - Prob. 38QCh. 23 - Prob. 39QCh. 23 - Prob. 40QCh. 23 - Prob. 41QCh. 23 - Prob. 42QCh. 23 - Prob. 43QCh. 23 - Prob. 44QCh. 23 - Prob. 45QCh. 23 - Prob. 46QCh. 23 - Prob. 47QCh. 23 - Prob. 48QCh. 23 - Prob. 49QCh. 23 - Prob. 50QCh. 23 - Prob. 51QCh. 23 - Prob. 52QCh. 23 - Prob. 53QCh. 23 - Prob. 54QCh. 23 - Prob. 55QCh. 23 - Prob. 56QCh. 23 - Prob. 57Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What characteristics must a binary star have to be a good candidate for a black hole? Why is each of these characteristics important?arrow_forwardWhat is Superstring theory?arrow_forwardWhich statement concerning black hole masses and Schwarzschild radii is not true? A. Even an object as small as you could become a black hole if there were some way to compress you to a size smaller than your Schwarzschild radius. B. The more massive the black hole, the larger the Schwarzschild radius. C. For black holes produced in massive star supernovae, Schwarzschild radii are typically a few to a few tens of kilometers. D. In a binary system with a black hole, the Schwarzschild radius depends on the distance from the black hole to the companion star.arrow_forward
- What characteristics must a binary star have to be a good candidate for a blackhole? Why is each of these characteristics important?arrow_forwardWhy is dark matter a problem?arrow_forwardWhat is the orbital period (in s) of a bit of matter in an accretion disk that is located 6 ✕ 105 km from a 99 M black hole? Hint: Use the circular orbit velocity formula, Vc = GM r . sarrow_forward
- An astronomer observed the motions of some galaxies. Based on his observations, he made the following statements. Which one of them is most likely to be false? Take Hubble's constant to be 67 km/s/Mpc. A. A galaxy observed to be moving away from us at a speed of 70 km/s is at a distance of about 1 Mpc from us. B. A galaxy observed to be moving away from us at a speed of 700 km/s is at a distance of about 10 Mpc from us. C. A galaxy observed to be moving away from us at a speed of 7000 km/s is at a distance of about 100 Mpc from us. D. A galaxy observed to be moving away from us at a speed of 70000 km/s is at a distance of about 1 Gpc from us. Is the answer D? Thank you!arrow_forwardExplain the theories Beyond the Standard Model.arrow_forwardPlease explain the theory also. I need to understand the concept. Thank you in advance. A light of wavelength 620 nm is emitted from 5 Schwarzschild radii from a 20 solar mass black hole. What wavelength is observed for this light by an observer a long distance away? (The objects are not moving with respect to the observer)arrow_forward
- Calculate your body’s volume.Next, assume that the nuclei are densely packed. Atomic distances are replaced by the radii of the nuclei. What would your body’s volume be like?How tall would you be? Could you become a black hole?arrow_forward(Astronomy) Schwarzschild Radius. Part A: Find the Schwarzschild radius for the least massive black hole. Part B: Is your calculated value greater than, the same as, or smaller than the diameter of a typical neutron star and the diameter of Manhattan, New York, which is around 10.9 km?arrow_forwardThe figure below is based on an assumed Hubble constant of 70 km/s/Mpc. How would you change the diagram to fit a Hubble constant of 50 km/s/Mpc? If the evolution of the universe were determined only by gravity, then its fate would be linked to its geometry. Open Negligible normal matter Flat Closed 14 9.5 Past Future Time Billion years ago Now The slope of the "negligible normal matter" line would be ---Select--- C and cross the time axis ---Select--- O than 14 billion years ago. The curved line separating the open and closed universe regions would cross the time axis O than 9.5 billion years ago. ---Select--- Scale of the universe, R © Cengage Learning 2013arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY