Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 26Q
To determine
The reason why the blue shifted spectral lines are the violations of the Hubble law.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A Type la supernova explodes in a galaxy at a
distance of 6.10×107 light-years from Earth. If
astronomers detect the light from the
supernova today, how many years T have
passed since the supernova exploded? T=
2.07 x10 -5 years Given a Hubble constant of
74.3 km/s/Mpc, at what speed v is this galaxy
moving away from Earth? v= km/s What is
this galaxy's redshift? redshift:
A galaxy at a distance of 25 Mpc has a recession velocity of 1875 km/sec.
What is Hubble’s constant based on this one galaxy?
Why is this not a good way to determine Hubble’s constant?
Galaxy NGC 123 has a velocity away from us of 1,320 km/s and the Hubble Constant's value is 70 km/s/Mpc. How far away is the galaxy according to Hubble's Law?
What would be the Hubble constant if the universe were 18 billion years old?
Chapter 23 Solutions
Universe: Stars And Galaxies
Ch. 23 - Prob. 1QCh. 23 - Prob. 2QCh. 23 - Prob. 3QCh. 23 - Prob. 4QCh. 23 - Prob. 5QCh. 23 - Prob. 6QCh. 23 - Prob. 7QCh. 23 - Prob. 8QCh. 23 - Prob. 9QCh. 23 - Prob. 10Q
Ch. 23 - Prob. 11QCh. 23 - Prob. 12QCh. 23 - Prob. 13QCh. 23 - Prob. 14QCh. 23 - Prob. 15QCh. 23 - Prob. 16QCh. 23 - Prob. 17QCh. 23 - Prob. 18QCh. 23 - Prob. 19QCh. 23 - Prob. 20QCh. 23 - Prob. 21QCh. 23 - Prob. 22QCh. 23 - Prob. 23QCh. 23 - Prob. 24QCh. 23 - Prob. 25QCh. 23 - Prob. 26QCh. 23 - Prob. 27QCh. 23 - Prob. 28QCh. 23 - Prob. 29QCh. 23 - Prob. 30QCh. 23 - Prob. 31QCh. 23 - Prob. 32QCh. 23 - Prob. 33QCh. 23 - Prob. 34QCh. 23 - Prob. 35QCh. 23 - Prob. 36QCh. 23 - Prob. 37QCh. 23 - Prob. 38QCh. 23 - Prob. 39QCh. 23 - Prob. 40QCh. 23 - Prob. 41QCh. 23 - Prob. 42QCh. 23 - Prob. 43QCh. 23 - Prob. 44QCh. 23 - Prob. 45QCh. 23 - Prob. 46QCh. 23 - Prob. 47QCh. 23 - Prob. 48QCh. 23 - Prob. 49QCh. 23 - Prob. 50QCh. 23 - Prob. 51QCh. 23 - Prob. 52QCh. 23 - Prob. 53QCh. 23 - Prob. 54QCh. 23 - Prob. 55QCh. 23 - Prob. 56QCh. 23 - Prob. 57Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is Hubble’s law considered one of the most important discoveries in the history of astronomy?arrow_forwardExplain how the Hubble constant, H0, can be used to make an estimate for the age of the Universe. Use the value of H0 = 0.07×103 kms-1/Mpc to estimate the Universe’s age. Comment on the significance of your answer.arrow_forwardThe figure below shows the spectra of two galaxies A and B.arrow_forward
- If Hubble’s constant is taken to be 70 ??? ???, and a quasar is found to have a radial velocity equal to 95% of the speed of light, how far is the quasar in Mpc? (Hint: Use Hubble’s Law and solve for the distance; and the speed of light in vacuum is: ?=3.0×105 ??/?).arrow_forwardA galaxy's rotation curve is a measure of the orbital speed of stars as a function of distance from the galaxy's centre. The fact that rotation curves are primarily flat at large galactocen- tric distances (vrot(r) ~ constant) is the most common example of why astronomer's believe dark matter exists. Let's work out why! Assuming that each star in a given galaxy has a circular orbit, we know that the accelera- tion due to gravity felt by each star is due to the mass enclosed within its orbital radius r and equal to v?/r. Here, ve is the circular orbit velocity of the star. (a) Show that the expected relationship between ve and r due to the stellar halo (p(r) xr-3.5) does not produce a flat rotation curve. (b) Show that a p(r) ∞ r¯² density profile successfully produces a flat ro- tation curve and must therefore be the general profile that dark matter follows in our galaxy.arrow_forwardwhy is it difficult to measure the Hubble constant?arrow_forward
- E2arrow_forwardWhen comparing two isolated spiral galaxies that have the same apparent brightness, but rotate at different rates, what can you say about their relative luminosity?arrow_forwardWhat does it mean if one elliptical galaxy has broader spectrum lines than another elliptical galaxy?arrow_forward
- Suppose you were Hubble and Humason, working on the distances and Doppler shifts of the galaxies. What sorts of things would you have to do to convince yourself (and others) that the relationship you were seeing between the two quantities was a real feature of the behavior of the universe? (For example, would data from two galaxies be enough to demonstrate Hubble’s law? Would data from just the nearest galaxies-in what astronomers call “the Local Group”-suffice?)arrow_forwardThe best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forwardSuppose the stars in an elliptical galaxy all formed within a few million years shortly after the universe began. Suppose these stars have a range of masses, just as the stars in our own galaxy do. How would the color of the elliptical change over the next several billion years? How would its luminosity change? Why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning