Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 54Q
To determine
The accuracy of the statement saying “The Sun is the only star in our galaxy and all of the other stars in the sky are located in other galaxies.”
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A distant galaxy has an apparent magnitude of 13 and is 5,000 kpc away. What is its absolute magnitude? (Round your answer to at least one decimal place.)
The difference in absolute magnitude between two objects viewed from the same distance is related to their fluxes by the flux-magnitude relation.
FA
= 2.51(MB - MA)
FB
How does the absolute magnitude of this galaxy compare to the Milky Way (M = -21)?
F,
distant galaxy
FMilky Way
Distance from
Apparent Brightness (rank;
brightest, 8 = dimmest)
Name of Star
Earth (light years) | 1 =
Sun
Sirius
8.6
Canopus
Arcturus
309
3.
36.7
4
Rigel
Vega
Alpha Centauri
Bernard's Star
773
5
25.3
4.3
7
5.9
8
13 What sentence explains why a star can be much farther from Earth than
the Sun, but still be bright?
nida nenv
A. Distance from Earth and apparent brightness are related.
B. Bright stars that are farther away are larger than the Sun.
C. The higher it appears in the sky, the brighter the star.
D. The apparent brightness scale goes up as stars get dimmer.
del sdT
helpp
Chapter 23 Solutions
Universe: Stars And Galaxies
Ch. 23 - Prob. 1QCh. 23 - Prob. 2QCh. 23 - Prob. 3QCh. 23 - Prob. 4QCh. 23 - Prob. 5QCh. 23 - Prob. 6QCh. 23 - Prob. 7QCh. 23 - Prob. 8QCh. 23 - Prob. 9QCh. 23 - Prob. 10Q
Ch. 23 - Prob. 11QCh. 23 - Prob. 12QCh. 23 - Prob. 13QCh. 23 - Prob. 14QCh. 23 - Prob. 15QCh. 23 - Prob. 16QCh. 23 - Prob. 17QCh. 23 - Prob. 18QCh. 23 - Prob. 19QCh. 23 - Prob. 20QCh. 23 - Prob. 21QCh. 23 - Prob. 22QCh. 23 - Prob. 23QCh. 23 - Prob. 24QCh. 23 - Prob. 25QCh. 23 - Prob. 26QCh. 23 - Prob. 27QCh. 23 - Prob. 28QCh. 23 - Prob. 29QCh. 23 - Prob. 30QCh. 23 - Prob. 31QCh. 23 - Prob. 32QCh. 23 - Prob. 33QCh. 23 - Prob. 34QCh. 23 - Prob. 35QCh. 23 - Prob. 36QCh. 23 - Prob. 37QCh. 23 - Prob. 38QCh. 23 - Prob. 39QCh. 23 - Prob. 40QCh. 23 - Prob. 41QCh. 23 - Prob. 42QCh. 23 - Prob. 43QCh. 23 - Prob. 44QCh. 23 - Prob. 45QCh. 23 - Prob. 46QCh. 23 - Prob. 47QCh. 23 - Prob. 48QCh. 23 - Prob. 49QCh. 23 - Prob. 50QCh. 23 - Prob. 51QCh. 23 - Prob. 52QCh. 23 - Prob. 53QCh. 23 - Prob. 54QCh. 23 - Prob. 55QCh. 23 - Prob. 56QCh. 23 - Prob. 57Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the following data on four stars: Which star would have the largest radius? Which star would have the smallest radius? Which star is the most common in our area of the Galaxy? Which star is the least common?arrow_forwardIs the Sun an average star? Why or why not?arrow_forwardA friend of yours who did not do well in her astronomy class tells you that she believes all stars are old and none could possibly be born today. What arguments would you use to persuade her that stars are being born somewhere in the Galaxy during your lifetime?arrow_forward
- One method to measure the diameter of a star is to use an object like the Moon or a planet to block out its light and to measure the time it takes to cover up the object. Why is this method used more often with the Moon rather than the planets, even though there are more planets?arrow_forwardAs seen from Earth, the Sun has an apparent magnitude of about 26.7 . What is the apparent magnitude of the Sun as seen from Saturn, about 10 AU away? (Remember that one AU is the distance from Earth to the Sun and that the brightness decreases as the inverse square of the distance.) Would the Sun still be the brightest star in the sky?arrow_forwardThe best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forward
- a) Calculate the period of the solar system's orbit around the Milky Way. Assume that we are 8.5 kpc from the galactic center and assume that the mass of the Milky Way interior to our orbit is ~ 10¹¹ solar masses. Alpha Centauri is a multiple star system only 1.34 parsecs away. The apparent magnitudes of the two main stars are: a Cen A: my = +0.01; a Cen B: my = +1.33. b) Calculate the ratio of the flux we receive in the V filter from a Cen A to the flux we receive from a Cen B. c) Calculate the absolute magnitude My of a Cen B.arrow_forwardThe H-R diagram is the most important graph in astronomy. One of the reasons that this graph is so powerful is the number of different kinds of data it shows. Most graphs show two types of data. The H-R diagram shows seven. Can you name these 7 types of information about stars that appear on the H-R diagram?arrow_forwardMost stars (Main sequence) generate light through the same mechanism. Because of this, there is an empirical relation between their mass, M, and their Luminosity, L. This relation could be written in the form L/Lsun = (M/Msun, This relation is shown in the log-log diagram below. Find the value of a and round it to the nearest integer. 10 104 102 10-2 10-4 0.1 1.0 2.0 0.2 0.5 5.0 10.0 20.0 Mam (solar masses) Luminosty (solar units)arrow_forward
- I answer is not 100, I also tried 21. I need help! Thank you!arrow_forwardA scientist, using a telescope, sees arcs of light around a galaxy. In 3–5 sentences, explain the cause of the arcs of light.arrow_forwardRecall that Hubble’s Law is given by V=HR; this means that H has units of inverse seconds (1/sec). A convenient laboratory set of units is to give H in km per sec per megaparsec. A parsec is 3.26 light years and the speed of light is 3 X 105 km/sec. Use 3.156 X 107 sec/yr. The first data off the then new Hubble Space telescope suggested a value of H equal to 108 km per sec per megaparsec. What is H in inverse seconds? Hint divide by the number of km in a megaparsec.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY