EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 25PCE
Predict/Explain (a) As the solid metal disk in Figure 23-37 swings to the right, from the region with no field into the region with a finite magnetic field, is the induced current in the disk clockwise, counterclockwise, or zero? (b) Choose the best explanation from among the following:
- I. The induced current is clockwise, since this produces a field within the disk in the same direction as the magnetic field that produced the current.
- II. The induced current is counterclockwise to generate a field within the disk that points out of the page.
- III. The induced current is zero because the disk enters a region where the magnetic field is uniform.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
EBK PHYSICS
Ch. 23.1 - Which of the following situations results in an...Ch. 23.2 - What is the angle in the definition of magnetic...Ch. 23.3 - In system 1 the magnetic flux through a coil with...Ch. 23.4 - A metal ring moves to the right from a field-free...Ch. 23.5 - Suppose the speed of the rod in Example 23-8 is...Ch. 23.6 - Consider the electric generator shown in Figure...Ch. 23.7 - Prob. 7EYUCh. 23.8 - Consider the circuit shown in Figure 23-25. (a) Is...Ch. 23.9 - Is more energy stored in an inductor by doubling...Ch. 23.10 - If a transformer doubled both the voltage and the...
Ch. 23 - Explain the difference between a magnetic field...Ch. 23 - A metal ring with a break in its perimeter is...Ch. 23 - Many equal-arm balances have a small metal plate...Ch. 23 - Figure 23-29 shows a vertical iron rod with a wire...Ch. 23 - A metal rod of resistance R can slide without...Ch. 23 - Recently, NASA tested a power generation system...Ch. 23 - Explain what happens when the angular speed of the...Ch. 23 - A 0 085-T magnetic field passes through a circular...Ch. 23 - A uniform magnetic field of 0.0250 T points...Ch. 23 - A magnetic field is oriented at an angle of 67 to...Ch. 23 - MRI Solenoid The magnetic field produced by an MRI...Ch. 23 - Find the magnitude of the magnetic flux through...Ch. 23 - At a certain location, the Earths magnetic field...Ch. 23 - A solenoid with 385 turns per meter and a diameter...Ch. 23 - A single-turn square loop of side L is centered on...Ch. 23 - A bar magnet is inside a closed cubical box...Ch. 23 - A 0.65-T magnetic field is perpendicular to a...Ch. 23 - Prob. 11PCECh. 23 - Figure 23-33 shows the magnetic flux through a...Ch. 23 - One type of antenna for receiving AM radio signals...Ch. 23 - A wire loop is placed in a magnetic field that is...Ch. 23 - Figure 23-35 shows four different situations in...Ch. 23 - Predict/Calculate The magnetic flux through a...Ch. 23 - Prob. 17PCECh. 23 - A single conducting loop of wire has an area of...Ch. 23 - The area of a 120-turn coil oriented with its...Ch. 23 - An emf is induced in a conducting loop of wire...Ch. 23 - A magnetic field increases from 0 to 0.55 T in 16...Ch. 23 - Predict/Explain A metal ring is dropped into a...Ch. 23 - Predict/Explain A metal ring is dropped into a...Ch. 23 - Predict/Explain Figure 23-37 shows two metal disks...Ch. 23 - Predict/Explain (a) As the solid metal disk in...Ch. 23 - A bar magnet with its north pole pointing downward...Ch. 23 - A Wire Loop and a Magnet A loop of wire is dropped...Ch. 23 - Suppose we change the situation shown in Figure...Ch. 23 - Figure 23-39 shows a current-carrying wire and a...Ch. 23 - Consider the physical system shown in Figure...Ch. 23 - Prob. 31PCECh. 23 - Prob. 32PCECh. 23 - Prob. 33PCECh. 23 - A conducting rod slides on two wires in a region...Ch. 23 - A metal rod 0.95 m long moves with a speed of 2.4...Ch. 23 - Airplane emf A Boeing KC-135A airplane has a...Ch. 23 - Predict/Calculate Figure 23-42 shows a...Ch. 23 - Referring to part (a) of Problem 37, (a) find the...Ch. 23 - (a) Find the current that flows in the circuit...Ch. 23 - Suppose the mechanical power delivered to the rod...Ch. 23 - Prob. 41PCECh. 23 - A rectangular coil 25 cm by 45 cm has 150 turns....Ch. 23 - A 1 6-m wire is wound into a coil with a radius of...Ch. 23 - Shake Flashlight A shake flashlight uses the...Ch. 23 - Predict/Calculate A circular coil with a diameter...Ch. 23 - A generator is designed to produce a maximum emf...Ch. 23 - Prob. 47PCECh. 23 - Prob. 48PCECh. 23 - Prob. 49PCECh. 23 - Prob. 50PCECh. 23 - Prob. 51PCECh. 23 - Prob. 52PCECh. 23 - Prob. 53PCECh. 23 - A simple RL circuit includes a 0.125-H inductor....Ch. 23 - Prob. 55PCECh. 23 - Prob. 56PCECh. 23 - Prob. 57PCECh. 23 - Prob. 58PCECh. 23 - Prob. 59PCECh. 23 - Prob. 60PCECh. 23 - Prob. 61PCECh. 23 - Alcator Fusion Experiment In the Alcator fusion...Ch. 23 - Superconductor Energy Storage An engineer proposes...Ch. 23 - Prob. 64PCECh. 23 - Prob. 65PCECh. 23 - Prob. 66PCECh. 23 - Transformer 1 has a primary voltage Vp and a...Ch. 23 - The electric motor in a toy train requires a...Ch. 23 - Predict/Calculate A disk drive plugged into a...Ch. 23 - A transformer with a turns ratio...Ch. 23 - A neon sign that requires a voltage of 11,000 V is...Ch. 23 - A step-down transformer produces a voltage of 6.0...Ch. 23 - A step-up transformer has 30 turns on the primary...Ch. 23 - CE Predict/Explain An airplane flies level to the...Ch. 23 - CE You hold a circular loop of wire at the north...Ch. 23 - Prob. 76GPCh. 23 - Interstellar Magnetic Field The Voyager I...Ch. 23 - Prob. 78GPCh. 23 - BIO Electrognathography Computerized jaw tracking,...Ch. 23 - A rectangular loop of wire 24 cm by 72 cm is bent...Ch. 23 - Consider a rectangular loop of wire 6.8 cm by 9.2...Ch. 23 - Predict/Calculate A car with a vertical radio...Ch. 23 - The rectangular coils in a 355-tum generator are...Ch. 23 - A cubical box 22 cm on a side is placed in a...Ch. 23 - BIO MRI Scanner An MRI scanner is based on a...Ch. 23 - BIO Transcranial Magnetic Stimulation Transcranial...Ch. 23 - A magnetic field with the time dependence shown in...Ch. 23 - Prob. 88GPCh. 23 - Prob. 89GPCh. 23 - Prob. 90GPCh. 23 - BIO Blowfly Maneuvers Suppose the fly described in...Ch. 23 - Prob. 92GPCh. 23 - Predict/Calculate A single-turn rectangular loop...Ch. 23 - Prob. 94GPCh. 23 - Prob. 95GPCh. 23 - Loop Detectors on Roadways Smart traffic lights...Ch. 23 - A car drives onto a loop detector and increases...Ch. 23 - A truck drives onto a loop detector and increases...Ch. 23 - Loop Detectors on Roadways Smart traffic lights...Ch. 23 - Referring to Conceptual Example 23-6 Suppose the...Ch. 23 - Referring to Conceptual Example 23-6 Suppose the...Ch. 23 - Referring to Example 23-8 (a) What external force...Ch. 23 - Predict/Calculate Referring to Example 23-8...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How do food chains and food webs differ? Which is the more accurate representation of feeding relationships in ...
Biology: Life on Earth (11th Edition)
35. Consider the reaction.
The graph shows the concentration of Br2 as a function of time.
a. Use the g...
Chemistry: Structure and Properties (2nd Edition)
Choose the best answer to each of the following. Explain your reasoning. In which of the following objects does...
Cosmic Perspective Fundamentals
In the environment, nutrients are generally _____. a. limiting b. present in excess c. stable d. artificially i...
Microbiology with Diseases by Body System (5th Edition)
Why is it necessary to be in a pressurized cabin when flying at 30,000 feet?
Anatomy & Physiology (6th Edition)
Q1. Which change is likely to increase the rate of reaction in a reaction mixture?
a. decreasing the temperatur...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The current I through a long solenoid with n trims per meter and radius R is changing with time as given by dI/dt. Calculate the induced electric field as a function of distance r from the central axis of the solenoid.arrow_forwardA truck is carrying a steel beam of length 15.0 in on a freeway. An accident causes the beam to be dumped off the truck and slide horizontally along the ground at a speed of 25.0 m/s. The velocity of the center of mass of the beam is northward while the length of the beam maintains an east-west orientation. The vertical component of the Earths magnetic field at this location has a magnitude of 35.0 T. What is the magnitude of the induced emf between the ends of the beam?arrow_forwardFigure 23.59 A coil is moved into and out of a region of uniform magnetic field. A coil is moved through a magnetic field as shown in Figure 23.59. The field is uniform inside the rectangle and zero outside. What is the direction of the induced current and what is the direction of the magnetic force on the coil at each position shown?arrow_forward
- (a) An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner's 2.00 T field with his fingers pointing in the direction of the field. Find the average emf induced in his wedding ling, given its diameter is 2.20 cm and assuming it takes 0.250 s to move it into the field. (b) Discuss whether this current would significantly change the temperature of the ring.arrow_forwardA thin conducting bar (60.0 cm long) aligned in the positive y direction is moving with velocity v=(1.25m/s)i in a region with a spatially uniform 0.400-T magnetic field directed at an angle of 36.0 above the xy plane. a. What is the magnitude of the emf induced along the length of the moving bar? b. Which end of the bar is positively charged?arrow_forwardA rectangular loop has dimensions 0.500 m by 0.300 m. The loop is hinged along the x-axis and lies in the xy-plane (Fig. P19.42). A uniform magnetic field of 1.50 T is directed at an angle of 40.0 with respect to the positive y-axis and lies parallel everywhere to the yz-plane. The loop carries a current of 0.900 A in the direction shown. (Ignore gravitation.) (a) In what direction is magnetic force exerted on wire segment ab? What is the direction of the magnetic torque associated with this force, as computed with respect to the x-axis? (b) What is the direction of the magnetic force exerted on segment cd? What is the direction of the magnetic torque associated with this force, again computed with respect to the x-axis? (c) Can the forces examined in parts (a) and (b) combine to cause the loop to rotate around the x-axis? Can they affect the motion of the loop in any way? Explain. (d) What is the direction (in the yz-plane) of the magnetic force exerted on segment bc? Measuring torques with respect to the x-axis, what is the direction of the torque exerted by the force on segment bc? (e) Looking toward the origin along the positive x-axis. Will the loop rotate clockwise or counterclockwise? (f) Compute the magnitude of the magnetic moment of the loop. (g) What is the angle between the magnetic moment vector and the magnetic field? (h) Compute the torque on the loop using the values found for the magnetic moment and magnetic field. Figure P19.42arrow_forward
- When a magnetic field is first turned on, t1 flux through a 20-turn loop varies with time according to m=5.0t22.0t ,where m is in milliwebers, tis in seconds, and the loop is in the plane of the page with the unit normal pointing outward. (a) What is the emf induced in the loop as a function of time? What is the direction of the induced current at (b) t= 0, (c) 0.10, (d) 1.0, and (e) 2.0 s?arrow_forwardCalculate the induced electric field in a 50-tuni coil with a diameter of 15 cm that is placed in a spatially uniform magnetic field of magnitude 0.50 T so that the face of the coil and the magnetic field are perpendicular. This magnetic field is reduced to zero in 0.10 seconds. Assume drat the magnetic field is cylindrically symmetric with respect to the central axis of the coil.arrow_forwardA coil of area 0.100 m2 is rotating at 60.0 rev/s with the axis of rotation perpendicular to a 0.200-T magnetic field. (a) If the coil has 1 000 turns, what is the maximum emf generated in it? (b) What is the orientation of the coil with respect to the magnetic field when the maximum induced voltage occurs?arrow_forward
- In earlier times when many households received nondigital television signals from an antenna, the lead-in wires from the antenna were often constructed in the form of two parallel wires (Fig. P31.50). The two wires carry currents of equal magnitude in opposite directions. The center-to-center separation of the wires is w, and a is their radius. Assume w is large enough compared with a that the wires carry the current uniformly distributed over their surfaces and negligible magnetic field exists inside the wires. (a) Why does this configuration of conductors have an inductance? (b) What constitutes the flux loop for this configuration? (c) Show that the inductance of a length x of this type of lead-in is L=0xln(waa) Figure P31.50arrow_forwardA square, flat loop of wire is pulled at constant velocity through a region of uniform magnetic field directed perpendicular to the plane of the loop as shown in Figure OQ31.5. Which of the following statements are correct? More than one statement may be correct. (a) Current is induced in the loop in the clockwise direction. (b) Current is induced in the loop in the counterclockwise direction. (c) No current is induced in the loop. (d) Charge separation occurs in the loop, with the top edge positive. (e) Charge separation occurs in the loop, with the top edge negative. Figure OQ31.5arrow_forwardA coil of 1000 turns encloses an area of 25 cm2. It is rotated in 0.010 s from a position where its plane is perpendicular to Earth’s magnetic field to one where its plane is parallel to the field. If the strength of the field is 6.0 x I0 T. what is the average emf induced in the coil?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY