EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 23, Problem 22PCE
Predict/Explain A metal ring is dropped into a localized region of constant magnetic field, as indicated in Figure 23-36. The magnetic field is zero above and below the region where it is finite. (a) For each of the three indicated locations (1, 2, and 3), is the induced current clockwise, counterclockwise, or zero? (b) Choose the best explanation from among the following:
- I. Clockwise at 1 to oppose the field, zero at 2 because the field is uniform, counterclockwise at 3 to try to maintain the field.
- II. Counterclockwise at 1 to oppose the field, zero at 2 because the field is uniform, clockwise at 3 to try to maintain the field.
- III. Clockwise at 1 to oppose the field, clockwise at 2 to maintain the field, clockwise at 3 to oppose the field.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
EBK PHYSICS
Ch. 23.1 - Which of the following situations results in an...Ch. 23.2 - What is the angle in the definition of magnetic...Ch. 23.3 - In system 1 the magnetic flux through a coil with...Ch. 23.4 - A metal ring moves to the right from a field-free...Ch. 23.5 - Suppose the speed of the rod in Example 23-8 is...Ch. 23.6 - Consider the electric generator shown in Figure...Ch. 23.7 - Prob. 7EYUCh. 23.8 - Consider the circuit shown in Figure 23-25. (a) Is...Ch. 23.9 - Is more energy stored in an inductor by doubling...Ch. 23.10 - If a transformer doubled both the voltage and the...
Ch. 23 - Explain the difference between a magnetic field...Ch. 23 - A metal ring with a break in its perimeter is...Ch. 23 - Many equal-arm balances have a small metal plate...Ch. 23 - Figure 23-29 shows a vertical iron rod with a wire...Ch. 23 - A metal rod of resistance R can slide without...Ch. 23 - Recently, NASA tested a power generation system...Ch. 23 - Explain what happens when the angular speed of the...Ch. 23 - A 0 085-T magnetic field passes through a circular...Ch. 23 - A uniform magnetic field of 0.0250 T points...Ch. 23 - A magnetic field is oriented at an angle of 67 to...Ch. 23 - MRI Solenoid The magnetic field produced by an MRI...Ch. 23 - Find the magnitude of the magnetic flux through...Ch. 23 - At a certain location, the Earths magnetic field...Ch. 23 - A solenoid with 385 turns per meter and a diameter...Ch. 23 - A single-turn square loop of side L is centered on...Ch. 23 - A bar magnet is inside a closed cubical box...Ch. 23 - A 0.65-T magnetic field is perpendicular to a...Ch. 23 - Prob. 11PCECh. 23 - Figure 23-33 shows the magnetic flux through a...Ch. 23 - One type of antenna for receiving AM radio signals...Ch. 23 - A wire loop is placed in a magnetic field that is...Ch. 23 - Figure 23-35 shows four different situations in...Ch. 23 - Predict/Calculate The magnetic flux through a...Ch. 23 - Prob. 17PCECh. 23 - A single conducting loop of wire has an area of...Ch. 23 - The area of a 120-turn coil oriented with its...Ch. 23 - An emf is induced in a conducting loop of wire...Ch. 23 - A magnetic field increases from 0 to 0.55 T in 16...Ch. 23 - Predict/Explain A metal ring is dropped into a...Ch. 23 - Predict/Explain A metal ring is dropped into a...Ch. 23 - Predict/Explain Figure 23-37 shows two metal disks...Ch. 23 - Predict/Explain (a) As the solid metal disk in...Ch. 23 - A bar magnet with its north pole pointing downward...Ch. 23 - A Wire Loop and a Magnet A loop of wire is dropped...Ch. 23 - Suppose we change the situation shown in Figure...Ch. 23 - Figure 23-39 shows a current-carrying wire and a...Ch. 23 - Consider the physical system shown in Figure...Ch. 23 - Prob. 31PCECh. 23 - Prob. 32PCECh. 23 - Prob. 33PCECh. 23 - A conducting rod slides on two wires in a region...Ch. 23 - A metal rod 0.95 m long moves with a speed of 2.4...Ch. 23 - Airplane emf A Boeing KC-135A airplane has a...Ch. 23 - Predict/Calculate Figure 23-42 shows a...Ch. 23 - Referring to part (a) of Problem 37, (a) find the...Ch. 23 - (a) Find the current that flows in the circuit...Ch. 23 - Suppose the mechanical power delivered to the rod...Ch. 23 - Prob. 41PCECh. 23 - A rectangular coil 25 cm by 45 cm has 150 turns....Ch. 23 - A 1 6-m wire is wound into a coil with a radius of...Ch. 23 - Shake Flashlight A shake flashlight uses the...Ch. 23 - Predict/Calculate A circular coil with a diameter...Ch. 23 - A generator is designed to produce a maximum emf...Ch. 23 - Prob. 47PCECh. 23 - Prob. 48PCECh. 23 - Prob. 49PCECh. 23 - Prob. 50PCECh. 23 - Prob. 51PCECh. 23 - Prob. 52PCECh. 23 - Prob. 53PCECh. 23 - A simple RL circuit includes a 0.125-H inductor....Ch. 23 - Prob. 55PCECh. 23 - Prob. 56PCECh. 23 - Prob. 57PCECh. 23 - Prob. 58PCECh. 23 - Prob. 59PCECh. 23 - Prob. 60PCECh. 23 - Prob. 61PCECh. 23 - Alcator Fusion Experiment In the Alcator fusion...Ch. 23 - Superconductor Energy Storage An engineer proposes...Ch. 23 - Prob. 64PCECh. 23 - Prob. 65PCECh. 23 - Prob. 66PCECh. 23 - Transformer 1 has a primary voltage Vp and a...Ch. 23 - The electric motor in a toy train requires a...Ch. 23 - Predict/Calculate A disk drive plugged into a...Ch. 23 - A transformer with a turns ratio...Ch. 23 - A neon sign that requires a voltage of 11,000 V is...Ch. 23 - A step-down transformer produces a voltage of 6.0...Ch. 23 - A step-up transformer has 30 turns on the primary...Ch. 23 - CE Predict/Explain An airplane flies level to the...Ch. 23 - CE You hold a circular loop of wire at the north...Ch. 23 - Prob. 76GPCh. 23 - Interstellar Magnetic Field The Voyager I...Ch. 23 - Prob. 78GPCh. 23 - BIO Electrognathography Computerized jaw tracking,...Ch. 23 - A rectangular loop of wire 24 cm by 72 cm is bent...Ch. 23 - Consider a rectangular loop of wire 6.8 cm by 9.2...Ch. 23 - Predict/Calculate A car with a vertical radio...Ch. 23 - The rectangular coils in a 355-tum generator are...Ch. 23 - A cubical box 22 cm on a side is placed in a...Ch. 23 - BIO MRI Scanner An MRI scanner is based on a...Ch. 23 - BIO Transcranial Magnetic Stimulation Transcranial...Ch. 23 - A magnetic field with the time dependence shown in...Ch. 23 - Prob. 88GPCh. 23 - Prob. 89GPCh. 23 - Prob. 90GPCh. 23 - BIO Blowfly Maneuvers Suppose the fly described in...Ch. 23 - Prob. 92GPCh. 23 - Predict/Calculate A single-turn rectangular loop...Ch. 23 - Prob. 94GPCh. 23 - Prob. 95GPCh. 23 - Loop Detectors on Roadways Smart traffic lights...Ch. 23 - A car drives onto a loop detector and increases...Ch. 23 - A truck drives onto a loop detector and increases...Ch. 23 - Loop Detectors on Roadways Smart traffic lights...Ch. 23 - Referring to Conceptual Example 23-6 Suppose the...Ch. 23 - Referring to Conceptual Example 23-6 Suppose the...Ch. 23 - Referring to Example 23-8 (a) What external force...Ch. 23 - Predict/Calculate Referring to Example 23-8...
Additional Science Textbook Solutions
Find more solutions based on key concepts
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Draw the enol tautomers for each of the following compounds. For compounds that have more than one enol tautome...
Organic Chemistry (8th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner's 2.00 T field with his fingers pointing in the direction of the field. Find the average emf induced in his wedding ling, given its diameter is 2.20 cm and assuming it takes 0.250 s to move it into the field. (b) Discuss whether this current would significantly change the temperature of the ring.arrow_forwardA wire of length 1.0 m is wound into a single-turn planar loop. The loop carries a current of 5.0 A, and it is placed in a uniform magnetic field of strength 0.25 T. (a) What is the maximum torque that the loop will experience if it is square? (b) If it is circular? (c) At what angle relative to B would die normal to the circular coil have to be oriented so that the torque on it would be the same as the maximum torque on the square coil?arrow_forwardThe current I through a long solenoid with n trims per meter and radius R is changing with time as given by dI/dt. Calculate the induced electric field as a function of distance r from the central axis of the solenoid.arrow_forward
- A coil of area 0.100 m2 is rotating at 60.0 rev/s with the axis of rotation perpendicular to a 0.200-T magnetic field. (a) If the coil has 1 000 turns, what is the maximum emf generated in it? (b) What is the orientation of the coil with respect to the magnetic field when the maximum induced voltage occurs?arrow_forwardA rectangular loop has dimensions 0.500 m by 0.300 m. The loop is hinged along the x-axis and lies in the xy-plane (Fig. P19.42). A uniform magnetic field of 1.50 T is directed at an angle of 40.0 with respect to the positive y-axis and lies parallel everywhere to the yz-plane. The loop carries a current of 0.900 A in the direction shown. (Ignore gravitation.) (a) In what direction is magnetic force exerted on wire segment ab? What is the direction of the magnetic torque associated with this force, as computed with respect to the x-axis? (b) What is the direction of the magnetic force exerted on segment cd? What is the direction of the magnetic torque associated with this force, again computed with respect to the x-axis? (c) Can the forces examined in parts (a) and (b) combine to cause the loop to rotate around the x-axis? Can they affect the motion of the loop in any way? Explain. (d) What is the direction (in the yz-plane) of the magnetic force exerted on segment bc? Measuring torques with respect to the x-axis, what is the direction of the torque exerted by the force on segment bc? (e) Looking toward the origin along the positive x-axis. Will the loop rotate clockwise or counterclockwise? (f) Compute the magnitude of the magnetic moment of the loop. (g) What is the angle between the magnetic moment vector and the magnetic field? (h) Compute the torque on the loop using the values found for the magnetic moment and magnetic field. Figure P19.42arrow_forwardA flat, circular loop has 20 turns. The radius of the loop is 10.0 cm and the current through the wire is 0.50 A. Determine the magnitude of the magnetic field at the center of the loop.arrow_forward
- Figure 23.59 A coil is moved into and out of a region of uniform magnetic field. A coil is moved through a magnetic field as shown in Figure 23.59. The field is uniform inside the rectangle and zero outside. What is the direction of the induced current and what is the direction of the magnetic force on the coil at each position shown?arrow_forwardA nonconducting hard rubber circular disk of radius R is painted with a uniform surface charge density tr. It is rotated about its axis with angular speed . (a) Find the magnetic field produced at a point on the axis a distance h meters from the center of the disk, (b) Find the numerical value of magnitude of the magnetic field when =1C/m2 , R = 20 cm, h = 2 cm, and magnetic field of Earth, which is about 1/2 Gauss. =400rad/sec , and compare it with the magnitude ofarrow_forward(a) A nonferrous screwdriver is being used in a 2.00 T magnetic field. What maximum emf can be induced along its 12.0 cm length when it moves at 6.00 m/s? (b) Is it likely that this emf will have any consequences or even be noticed?arrow_forward
- The current through a circular wire loop of radius 10 cm is 5.0 A. (a) Calculate themagnetic dipole moment of the loop. (b) What is the torque on the loop if it is in a uniform 0.20-T magnetic field such that p and B are directed at 300 to each other? (C) For this position, what is the potential energy of the dipole?arrow_forwardA rectangular copper ring, of mass 100 g and resistance 0.2 1, is in a region of uniform magnetic field that is perpendicular to the area enclosed by the ring and horizontal to Earth’s surface. The ring is let go from rest when it is at the edge of the nonzero magnetic field region (see below). (a) Find its speed when the ring just exits the region of uniform magnetic field. (b) If it was let go at t = 0, what is the time when it exits the region of magnetic field for the following values: a=25cm,b=50cmB=3T , and g=9.8m/s2 ? Assume the magnetic field of the induced current is negligible compared to 3T.arrow_forwardExplain why the magnetic field would not be unique (that is, not have a single value) at a point in space where magnetic field lines might cross. (Consider the direction of the field at such a point.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY