Concept explainers
Predict/Calculate A single-turn rectangular loop of width W and length L moves parallel to its length with a speed v. The loop moves from a region with a magnetic field
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
EBK PHYSICS
Additional Science Textbook Solutions
Concepts of Genetics (12th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Campbell Essential Biology (7th Edition)
Anatomy & Physiology (6th Edition)
Campbell Biology (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
- Magnetic field inside a torus. Consider a torus of rectangular cross-section with inner radius a and outer radius b. N turns of an insulated thin wire are wound evenly on the toms tightly all around the torus arid connected to a battery producing a steady current f in the wire. Assume that the current on the top and bottom surfaces in the figure is radial, and the current on the inner and outer radii surfaces is vertical. Find the magnetic field inside the toms as a function of radial distance r from the axis.arrow_forwardA proton moving horizontally enters a region where a uniform magnetic field is directed perpendicular to the proton’s velocity as shown in Figure OQ22.4. After the proton enters the field, does it (a) deflect downward, with its speed remaining constant; (b) deflect upward, moving in a semicircular path with constant speed, and exit the field moving to the left; (c) continue to move in the horizontal direction with constant velocity; (d) move in a circular orbit and become trapped by the field; or (e) deflect out of the plane of the paper? Figure OQ22.4arrow_forwardA wire of length 1.0 m is wound into a single-turn planar loop. The loop carries a current of 5.0 A, and it is placed in a uniform magnetic field of strength 0.25 T. (a) What is the maximum torque that the loop will experience if it is square? (b) If it is circular? (c) At what angle relative to B would die normal to the circular coil have to be oriented so that the torque on it would be the same as the maximum torque on the square coil?arrow_forward
- A proton moving horizontally enters a region where a uniform magnetic field is directed perpendicular to the proton's velocity as shown in Figure OQ29.4. After the proton enters the field, does it (a) deflect downward, with its speed remaining constant; (b) deflect upward, moving in a semicircular path with constant speed, and exit the field moving to the left; (c) continue to move in the horizontal direction with constant velocity; (d) move in a circular orbit and become trapped by the field; or (e) deflect out of the plane of the paper?arrow_forwardTwo long coaxial copper tubes, each of length L, are connected to a battery of voltage V. The inner tube has inner radius o and outer radius b, and the outer tube has inner radius c and outer radius d. The tubes are then disconnected from the battery and rotated in the same direction at angular speed of radians per second about their common axis. Find the magnetic field (a) at a point inside the space enclosed by the inner tube r d. (Hint: Hunk of copper tubes as a capacitor and find the charge density based on the voltage applied, Q=VC, C=20LIn(c/b) .)arrow_forwardTwo long, parallel wires carry currents of 20.0 A and 10.0 A in opposite directions (Fig. OQ22.13). Which of the following statements is true? More than one statement may be correct. (a) In region I, the magnetic field is into the page and is never zero. (b) In region II, the field is into the page and can be zero. (c) In region III, it is possible for the field to be zero. (d) In region I, the magnetic field is out of the page and is never zero. (e) There are no points where the field is zero. Figure OQ22.13 Objective Questions 13 and 14.arrow_forward
- Sketch a plot of the magnitude of the magnetic field as a function of position r for a coax (Fig. P31.27).arrow_forwardA rectangular loop has dimensions 0.500 m by 0.300 m. The loop is hinged along the x-axis and lies in the xy-plane (Fig. P19.42). A uniform magnetic field of 1.50 T is directed at an angle of 40.0 with respect to the positive y-axis and lies parallel everywhere to the yz-plane. The loop carries a current of 0.900 A in the direction shown. (Ignore gravitation.) (a) In what direction is magnetic force exerted on wire segment ab? What is the direction of the magnetic torque associated with this force, as computed with respect to the x-axis? (b) What is the direction of the magnetic force exerted on segment cd? What is the direction of the magnetic torque associated with this force, again computed with respect to the x-axis? (c) Can the forces examined in parts (a) and (b) combine to cause the loop to rotate around the x-axis? Can they affect the motion of the loop in any way? Explain. (d) What is the direction (in the yz-plane) of the magnetic force exerted on segment bc? Measuring torques with respect to the x-axis, what is the direction of the torque exerted by the force on segment bc? (e) Looking toward the origin along the positive x-axis. Will the loop rotate clockwise or counterclockwise? (f) Compute the magnitude of the magnetic moment of the loop. (g) What is the angle between the magnetic moment vector and the magnetic field? (h) Compute the torque on the loop using the values found for the magnetic moment and magnetic field. Figure P19.42arrow_forwardA small, circular washer of radius a = 0.500 cm is held directly below a long, straight wire carrying a current of I = 10.0 A. The washer is located h = 0.500 m above the top of a table (Fig. P31.69). Assume the magnetic Held is nearly constant over the area of the washer and equal to the magnetic field at the center of the washer. (a) If the washer is dropped from rest, what is the magnitude of the average induced emf in the washer over the time interval between its release and the moment it hits the tabletop? (b) What is the direction of the induced current in the washer?arrow_forward
- A flat, circular loop has 20 turns. The radius of the loop is 10.0 cm and the current through the wire is 0.50 A. Determine the magnitude of the magnetic field at the center of the loop.arrow_forwardA metal bar of mass 500 g slides outward at a constant speed of 1.5 cm/s over two parallel rails separated by a distance of 30 cm which are pail of a U-shaped conductor. There is a uniform magnetic field of magnitude 2 T pointing out of the page over the entire area. The railing and metal bar have an equivalent resistance of 150 . (a) Determine the induced current, both magnitude and direction, (b) Find the direction of tire induced current if the magnetic field is pointing into the page, (c) Find the direction of the induced current if the magnetic field is pointed into the page and the bar moves inwards.arrow_forwardA current is induced in a circular loop of radius 1.5 cm between two poles of a horseshoe electromagnet when the current in the electromagnet is varied. The magnetic Field in the area of the loop is perpendicular to the area and has a uniform magnitude. If the rate of change of magnetic field is 10 T/s, find the magnitude and direction of the induced current if resistance of the loop is 25 .arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning