Concept explainers
BIO Transcranial Magnetic Stimulation Transcranial magnetic stimulation (TMS) is a noninvasive method for studying brain function, and possibly for treatment as well. In this technique, a
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
EBK PHYSICS
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
College Physics: A Strategic Approach (3rd Edition)
Campbell Biology (11th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Biology: Life on Earth (11th Edition)
Organic Chemistry (8th Edition)
- (a) A DC power line for a light-rail system carries 1000 A at an angle of 30.0° to the Earth’s 5.00105-T field. What is the force on a 100-m section of this line? (b) Discuss practical concerns this presents, if any.arrow_forwardReview A proton is accelerated from rest through a 5.00-V potential difference. a. What is the protons speed after it has been accelerated? b. What is the maximum magnetic field that this proton produces at a point that is 1.00 m from the proton?arrow_forwardA conductor consists of a circular loop of radius K and two long, straight sections as shown in Figure P50.7. The wire lies in the plane of the paper and carries a current I. (a) What is the direction of the magnetic field at the center of the loop? (b) Find an expression for the magnitude of the magnetic field at the center of the loop.arrow_forward
- Unreasonable Results A charged particle having mass 6.641027kg (that of a helium atom) moving at 8.70105m/s perpendicular to a 1.50T magnetic field travels in a circular path of radius 16.0 mm. (a) What is the charge of the particle? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forwardTo see why an MRI utilizes iron to increase the magnetic field created by a coil, calculate the current needed in a 400-looppermeter circular coil 0.660 m in radius to create a 1.20T field (typical of an MRI instrument) at its center with no iron present. The magnetic field of a proton is approximately like that of a circular current loop 0.6501015m in radius carrying 1.05104A. What is the field at the center of such a loop?arrow_forwardThe magnitudes of the electric and magnetic fields in a velocity selector are 1.8105V/m and 0.080 T, respectively, (a) What speed must a proton have to pass through tire selector? (b) Also calculate the speeds required for an alpha-particle and a singly ionized SO atom to pass through the selector.arrow_forward
- A proton of speed v=6105m/s enters a region of uniform magnetic field of B = 0.5 T at an angle of q = 30° to the magnetic field. In the region of magnetic field proton describes a helical path with radius R and pitch p (distance between loops.) Find R and p.arrow_forwardUnreasonable Results Frustrated by the small Hall voltage obtained in blood flow measurements, a medical physicist decides to increase the applied magnetic field strength to get a 0.500V output for blood moving at 30.0 cm/s in a 1.50cmdiameter vessel. (a) What magnetic field strength is needed? (b) What is unreasonable about this result? (c) Which premise is responsible?arrow_forward(a) What is the angle between a wire carrying an 8.00-A current and the 1.20-T field it is in if 50.0 cm of the wire experiences a magnetic force of 2.40 N? (b) What is the force on the wire if it is rotated to make an angle of 90° with the field?arrow_forward
- A particle’s path is bent when it passes through a region of non-zero magnetic field although its speed remains unchanged. This is very useful for “beam steering’’ in particle accelerators. Consider a proton of speed 4106m/s entering a region of uniform magnetic field 0.2 T over a 5-cm-wide region. Magnetic field is perpendicular to the velocity of the particle. By how much angle will the path of the proton be bent? (Hint: the particle comes out tangent to a circle.arrow_forward(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1.001012N. What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in Earth's field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity' and noting that static is often absent,arrow_forwardA small, circular washer of radius a = 0.500 cm is held directly below a long, straight wire carrying a current of I = 10.0 A. The washer is located h = 0.500 m above the top of a table (Fig. P31.69). Assume the magnetic Held is nearly constant over the area of the washer and equal to the magnetic field at the center of the washer. (a) If the washer is dropped from rest, what is the magnitude of the average induced emf in the washer over the time interval between its release and the moment it hits the tabletop? (b) What is the direction of the induced current in the washer?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning