General, Organic, & Biological Chemistry
3rd Edition
ISBN: 9780073511245
Author: Janice Gorzynski Smith Dr.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 23.63P
Interpretation Introduction
Interpretation:
The formation of 10 molecules of ATP from the
Concept Introduction:
Aerobic respiration occurs in two steps:
- Glycolysis
- Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below:
In the presence of oxygen means aerobic respiration, this pyruvate enters the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like NAD+, GDP, and FAD and CO2 gas is formed as the waste product.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why does Glycolysis only release a small amount of the total available energy that can be harvested from glucose?
What is metabolism and where is energy produced in cells?
Use the following information corresponding to 1 Molar concentrations of reactants and products for Questions 7 -13.
ΔHo’ = -63.39 kJ/mol and ΔS o’ = -0.1255 kJ/molK.
Glycerol + ATP → ADP + 3-Phosphoglycerate:
ΔHo’ = -63.39 kJ/mol and ΔS o’ = -0.1255 kJ/molK.
At what temperature (if any) is this reaction excergonic?
Report your answer in Kelvin using inequality signs with out and extra spaces added in.
For example
T=100.00K
T>100.00K
T<100.00K
T</=100.00K less than or equal to
T>/=100.00K greater than or equal to
Chapter 23 Solutions
General, Organic, & Biological Chemistry
Ch. 23.2 - Prob. 23.1PCh. 23.3 - Prob. 23.2PCh. 23.3 - Prob. 23.3PCh. 23.3 - Prob. 23.4PCh. 23.3 - Prob. 23.5PCh. 23.4 - Prob. 23.6PCh. 23.4 - Prob. 23.7PCh. 23.4 - Prob. 23.8PCh. 23.4 - Prob. 23.9PCh. 23.4 - Prob. 23.10P
Ch. 23.5 - Prob. 23.11PCh. 23.5 - Prob. 23.12PCh. 23.5 - Prob. 23.13PCh. 23.6 - Prob. 23.14PCh. 23.6 - Prob. 23.15PCh. 23.6 - Prob. 23.16PCh. 23 - Prob. 23.17PCh. 23 - Prob. 23.18PCh. 23 - Prob. 23.19PCh. 23 - Prob. 23.20PCh. 23 - Prob. 23.21PCh. 23 - Prob. 23.22PCh. 23 - Prob. 23.23PCh. 23 - Prob. 23.24PCh. 23 - Prob. 23.25PCh. 23 - Prob. 23.26PCh. 23 - Prob. 23.27PCh. 23 - Prob. 23.28PCh. 23 - The phosphorylation of glucose with forms glucose...Ch. 23 - Prob. 23.30PCh. 23 - Prob. 23.31PCh. 23 - Prob. 23.32PCh. 23 - Prob. 23.33PCh. 23 - Prob. 23.34PCh. 23 - Prob. 23.35PCh. 23 - Prob. 23.36PCh. 23 - Prob. 23.37PCh. 23 - Classify each substance as an oxidizing agent, a...Ch. 23 - Prob. 23.39PCh. 23 - Prob. 23.40PCh. 23 - Prob. 23.41PCh. 23 - Prob. 23.42PCh. 23 - Prob. 23.43PCh. 23 - Prob. 23.44PCh. 23 - Prob. 23.45PCh. 23 - Prob. 23.46PCh. 23 - Prob. 23.47PCh. 23 - Prob. 23.48PCh. 23 - Prob. 23.49PCh. 23 - Prob. 23.50PCh. 23 - Prob. 23.51PCh. 23 - Prob. 23.52PCh. 23 - Prob. 23.53PCh. 23 - Prob. 23.54PCh. 23 - Prob. 23.55PCh. 23 - Prob. 23.56PCh. 23 - Prob. 23.57PCh. 23 - Prob. 23.58PCh. 23 - Prob. 23.59PCh. 23 - Prob. 23.60PCh. 23 - Prob. 23.61PCh. 23 - Prob. 23.62PCh. 23 - Prob. 23.63PCh. 23 - Prob. 23.64PCh. 23 - Prob. 23.65PCh. 23 - Prob. 23.66PCh. 23 - Prob. 23.67PCh. 23 - Prob. 23.68PCh. 23 - Prob. 23.69PCh. 23 - Prob. 23.70PCh. 23 - Prob. 23.71PCh. 23 - Prob. 23.72PCh. 23 - Prob. 23.73PCh. 23 - Prob. 23.74PCh. 23 - Prob. 23.75CPCh. 23 - Prob. 23.76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write a generalized chemical equation, containing acronyms, for the hydrolysis of ATP to ADP.arrow_forwardHow many moles of ATP can be synthesized from ADP using the 500. Calories ingested during a fast-food lunch? How many molecules of ATP does this correspond to?arrow_forwardGive an account of the total ATP yield when I molecule of glucose is converted to carbon dioxide and water?arrow_forward
- Why is the conversion of lactic acid from the blood into glucose in the liver in an organism’s best interest?arrow_forwardThe metabolism of glucose produces CO2 and H2O, how does the human body expect these reaction products?arrow_forwardThe average adult consumes approximately 11,700 kJ per day. Assuming that the metabolic pathways leading to ATP synthesis operate at 50% thermodynamic efficiency, about 5850 kJ ends up in the form of synthesized ATP. The average adult consumes approximately 11,700 kJ per day. Assuming that the metabolic pathways leading to ATP synthesis operate at 50% thermodynamic efficiency, about 5850 kJ ends up in the form of synthesized ATP. Imagine that creatine phosphate, rather than ATP, is the universal energy carrier molecule in the human body. Assume that the cellular concentrations of creatine phosphate, creatine, and phosphate are 21.7 mM, 2.17×10-3 mM, and 6.30 mM, respectively. Calculate the weight of creatine phosphate that would need to be consumed each day by a typical adult human if creatine phosphate could not be recycled. Estimate the free energy of hyrdolysis of creatine phosphate under cellular conditions to determine how many moles are required. Use the standard…arrow_forward
- Which of the following are thought to be possible explanations for apparent contradictions in the energy balance as it relates to weight loss and the thermodynamic laws? O self reported energy intake and expenditures. O the assumption that weight loss is based on carbohydrates decreases only. O metabolic efficency D over time as weight loss occurs there will be increases in resting energy expenditure.arrow_forwardThe oxidation of 1 mol of glucose supplies enough meta-bolic energy to form 36 mol of ATP. Oxidation of 1 mol of a typ-ical dietary fat like tristearin (C₅₇H₁₁₆O₆) yields enough energyto form 458 mol of ATP. (a) How many molecules of ATP canform per gram of glucose? (b) Per gram of tristearin?arrow_forwardIn the electron transport chain, the hydrogen ions enter the inner compartment of mitochondria through special channels formed by A. ATP synthase. B. coenzyme A. C. acetyl CoA. D. oxygen.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Chemistry In Focus
Chemistry
ISBN:9781305084476
Author:Tro, Nivaldo J., Neu, Don.
Publisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co