Concept explainers
(a)
Interpretation:
The product formed from NADH in the electron transport chain should be determined.
Concept Introduction:
Aerobic respiration occurs in two steps:
- Glycolysis
- Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below;
In the presence of oxygen means aerobic respiration, this pyruvate enters in the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like

Answer to Problem 23.58P
NADH produces two ATPs for every NADH2 molecule.
Explanation of Solution
The citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction. It initiates with the reaction of acetyl CoA (a 2 C's substance) that reacts with a 4 C's substance to form a product of 6 C's. Later carbon atoms are removed in the form of carbon dioxide gas.
In this process, 2 H's are transferred to FAD and produce FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
NADH is created through
(b)
Interpretation:
The product formed from
Concept Introduction:
Aerobic respiration occurs in two steps;
- Glycolysis
- Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below;
In the presence of oxygen means aerobic respiration, this pyruvate enters the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like

Answer to Problem 23.58P
The
Explanation of Solution
The citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction. It initiates with the reaction of acetyl CoA (a 2 C's substance) that reacts with a 4 C's substance to form a product of 6 C's. Later carbon atoms are removed in the form of carbon dioxide gas.
In this process, 2 H's are transferred to FAD and produce FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
(c)
Interpretation:
The product formed from ADP in the electron transport chain should be determined.
Concept Introduction:
Aerobic respiration occurs in two steps;
- Glycolysis
- Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below;
In the presence of oxygen means aerobic respiration, this pyruvate enters the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like

Answer to Problem 23.58P
In the electron transport chain, ADP involves in the formation of ATP molecules in the mitochondria.
Explanation of Solution
The citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction.
In this process, 2 H's are transferred to FAD and produce FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
In the electron transport chain, ADP involves in the formation of ATP molecules in the mitochondria.
(d)
Interpretation:
The product formed from O2 in the electron transport chain should be determined.
Concept Introduction:
Aerobic respiration occurs in two steps;
- Glycolysis
- Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below:
In the presence of oxygen means aerobic respiration, this pyruvate enters in the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like

Answer to Problem 23.58P
The electron transport chain process involves the pumping of the protons from the mitochondrial matrix to the intermembrane space that reduces the oxygen to a water molecule.
Explanation of Solution
The citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction.
In this process, 2 H's are transferred to FAD and produce FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
The electron transport chain is embedded in the inner mitochondrial membrane and it involves the shuffles in the electrons from NADH and FADH2 to molecular oxygen.
The electron transport chain process involves the pumping of the protons from the mitochondrial matrix to the intermembrane space that reduces the oxygen to a water molecule.
Want to see more full solutions like this?
Chapter 23 Solutions
ALEKS 360 ACCESS CARD F/GEN. ORG.CHEM
- What are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forwardWhat are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forwardA block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forward
- Potential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forwardCan u help me figure out the reaction mechanisms for these, idk where to even startarrow_forwardHi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward
- Hi, I need your help i dont know which one to draw please. I’ve attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forwardIndicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. CO₂C2H5 + CH3-NH-NH,arrow_forward
- Draw the major product of this reaction N-(cyclohex-1-en-1-yl)-1-(pyrrolidino) reacts with CH2=CHCHO, heat, H3O+arrow_forwardDraw the starting material that would be needed to make this product through an intramolecular Dieckmann reactionarrow_forwardDraw the major product of this reaction. Nitropropane reacts + pent-3-en-2-one reacts with NaOCH2CH3, CH3CHOHarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning



