Concept explainers
(a)
Interpretation:
The role of FADH2 in the electron transport chain should be determined.
Concept Introduction:
Aerobic respiration occurs in two steps:
- Glycolysis
- Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below:
In the presence of oxygen means aerobic respiration, this pyruvate enters the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like

Answer to Problem 23.55P
FADH2 is created from FAD through
Explanation of Solution
The citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction. It initiates with the reaction of acetyl CoA (a 2 C's substance) that reacts with a 4 C's substance to form a product of 6 C's. Later, carbon atoms are removed in the form of carbon dioxide gas.
In this process, 2 H's are transferred to FAD and produce FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
FADH2 is created from FAD through reduction-oxidation reactions in the Krebs cycle during respiration. It gives its electrons in the electron transport chain that produces two ATPs for every FADH2 molecule.
(b)
Interpretation:
The role of ADP in the electron transport chain should be determined.
Concept Introduction:
Aerobic respiration occurs in two steps:
- Glycolysis
- Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below:
In the presence of oxygen means aerobic respiration, this pyruvate enters the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like

Answer to Problem 23.55P
In the electron transport chain, a single molecule of NADH has generated three ATP molecules from ADP in the mitochondria.
Explanation of Solution
The citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction.
In this process, 2 H's are transferred to FAD and produce FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
In the electron transport chain, a single molecule of NADH has generated three ATP molecules from ADP in the mitochondria.
(c)
Interpretation:
The role of ATP synthase in the electron transport chain should be determined.
Concept Introduction:
Aerobic respiration occurs in two steps:
- Glycolysis
- Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below:
In the presence of oxygen means aerobic respiration, this pyruvate enters the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like

Answer to Problem 23.55P
In the electron transport chain, the ATP synthase is an enzyme that converts the mechanical work into chemical energy and produces an ATP molecule. The ATP powers most cellular reactions in the living organism.
Explanation of Solution
The citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction.
In this process, 2 H's are transferred to FAD and produce FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
In the electron transport chain, the ATP synthase is an enzyme that converts the mechanical work into chemical energy and produces an ATP molecule. The ATP powers most cellular reactions in the living organism.
(d)
Interpretation:
The role of the inner mitochondrial membrane in the electron transport chain should be determined.
Concept Introduction:
Aerobic respiration occurs in two steps:
- Glycolysis
- Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below:
In the presence of oxygen means aerobic respiration, this pyruvate enters the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like

Answer to Problem 23.55P
The electron transport chain is embedded in the inner mitochondrial membrane and it involves the shuffles in the electrons from NADH and FADH2 to molecular oxygen.
Explanation of Solution
The citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction.
In this process, 2 H's are transferred to FAD and produces FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
The electron transport chain is embedded in the inner mitochondrial membrane and it involves the shuffles in the electrons from NADH and FADH2 to molecular oxygen.
The electron transport chain process is involved in the pumping of the protons from the mitochondrial matrix to the intermembrane space. It reduces oxygen and forms water.
Want to see more full solutions like this?
Chapter 23 Solutions
ALEKS 360 ACCESS CARD F/GEN. ORG.CHEM
- 4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward
- 3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forward
- Use the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage Learning




