EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
14th Edition
ISBN: 9780133976588
Author: HIBBELER
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22.1, Problem 13P
The body of arbitrary shape has a mass m, mass center at G, and a radius of gyration about G of kG. If it is displaced a slight amount θ from its equilibrium position and released, determine the natural period of vibration.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Important problem. The motor produces
a counterclockwise torque 1 N.m on the
attached disk A. A Part of this torque is
transferred to the disk C through the belt after
amplification. The disk A has mass 0.5 kg.
and the disk C has mass = 4.5 kg. Find:
(50 m
5omm
pully C
I.
The difference tension between the
palley A
Te
belt parts (7- T).
II.
The angular acceleration of the disk
С.
The angular acceleration of disk A.
The angular velocity of the disk C after 5 seconds from the motion start.
The transferred torque to the disk C.
III.
IV.
V.
The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the
wheel is 0.6m. The radius of gyration ke=0.4 m. The spring's unstretched length is Lo=1.0 m.
The stiffness coefficient of the spring is k-2.0 N/m. The wheel is released from rest at the
state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls
without slipping and passes the position at the state 2 when the angle is 8=0°. The spring's
length at the state 2 is L2=4 m.
(6) The elastic potential energy the state 2 is
HILAI
L₂
#
State 2
ZG
State 1
(N-m) (two decimal places)
The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the
wheel is 0.6m. The radius of gyration ke=0.4 m. The spring's unstretched length is Lo=1.0 m.
The stiffness coefficient of the spring is k-2.0 N/m. The wheel is released from rest at the
state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls
without slipping and passes the position at the state 2 when the angle is 0=0°. The spring's
length at the state 2 is L2=4 m.
(4) The elastic potential energy at the potion 1 is_
HULKU
2₂
State 2
G
m
State 1
(N-m) (two decimal places)
Chapter 22 Solutions
EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
Ch. 22.1 - A spring is stretched 175 mm by an 8-kg block. If...Ch. 22.1 - Prob. 2PCh. 22.1 - A spring is stretched 200 mm by a 15-kg block. If...Ch. 22.1 - When a 20-lb weight is suspended from a spring,...Ch. 22.1 - Prob. 5PCh. 22.1 - Prob. 6PCh. 22.1 - Prob. 7PCh. 22.1 - Prob. 8PCh. 22.1 - A 3-kg block is suspended from a spring having a...Ch. 22.1 - Prob. 10P
Ch. 22.1 - Prob. 11PCh. 22.1 - 22-12. Determine the natural period of vibration...Ch. 22.1 - The body of arbitrary shape has a mass m, mass...Ch. 22.1 - Determine the torsional stiffness k, measured in...Ch. 22.1 - Prob. 15PCh. 22.1 - Prob. 16PCh. 22.1 - If the natural periods of oscillation of the...Ch. 22.1 - Prob. 18PCh. 22.1 - Prob. 19PCh. 22.1 - A uniform board is supported on two wheels which...Ch. 22.1 - If the wire AB is subjected to a tension of 20 lb,...Ch. 22.1 - The bar has a length l and mass m. It is supported...Ch. 22.1 - The 20-kg disk, is pinned at its mass center O and...Ch. 22.1 - Prob. 24PCh. 22.1 - If the disk in Prob. 22-24 has a mass of 10 kg,...Ch. 22.1 - Prob. 26PCh. 22.1 - Prob. 27PCh. 22.1 - Prob. 28PCh. 22.1 - Prob. 29PCh. 22.2 - Determine the differential equation of motion of...Ch. 22.2 - Determine the natural period of vibration of the...Ch. 22.2 - Determine the natural period of vibration of the...Ch. 22.2 - Prob. 33PCh. 22.2 - Determine the differential equation of motion of...Ch. 22.2 - Prob. 35PCh. 22.2 - Prob. 36PCh. 22.2 - Prob. 37PCh. 22.2 - Prob. 38PCh. 22.2 - Prob. 39PCh. 22.2 - If the slender rod has a weight of 5 lb, determine...Ch. 22.6 - If the block-and-spring model is subjected to the...Ch. 22.6 - Prob. 42PCh. 22.6 - A 4-lb weight is attached to a spring having a...Ch. 22.6 - Prob. 44PCh. 22.6 - Prob. 45PCh. 22.6 - Prob. 46PCh. 22.6 - Prob. 47PCh. 22.6 - Prob. 48PCh. 22.6 - Prob. 49PCh. 22.6 - Prob. 50PCh. 22.6 - The 40-kg block is attached to a spring having a...Ch. 22.6 - The 5kg circular disk is mounted off center on a...Ch. 22.6 - Prob. 53PCh. 22.6 - Prob. 54PCh. 22.6 - Prob. 55PCh. 22.6 - Prob. 56PCh. 22.6 - Prob. 57PCh. 22.6 - Prob. 58PCh. 22.6 - Prob. 59PCh. 22.6 - The 450-kg trailer is pulled with a constant speed...Ch. 22.6 - Prob. 61PCh. 22.6 - Prob. 62PCh. 22.6 - Prob. 63PCh. 22.6 - The spring system is connected to a crosshead that...Ch. 22.6 - Prob. 65PCh. 22.6 - Prob. 66PCh. 22.6 - Prob. 67PCh. 22.6 - The 200-lb electric motor is fastened to the...Ch. 22.6 - Prob. 69PCh. 22.6 - If two of these maximum displacements can be...Ch. 22.6 - Prob. 71PCh. 22.6 - Prob. 72PCh. 22.6 - Prob. 73PCh. 22.6 - Prob. 74PCh. 22.6 - Prob. 75PCh. 22.6 - Prob. 76PCh. 22.6 - Prob. 77PCh. 22.6 - Prob. 78PCh. 22.6 - Prob. 79P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration ke=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 8=0°. The spring's length at the state 2 is L2=4 m. (3) The stretched spring length of the spring at the state 1 is_ places) 2₂ State 2 7717 State 1 _(m) (two decimalarrow_forwardThe platform AB when empty has a mass of 400 kg centre of mass at G1 and natural period of oscillation t1=3.82 s. If a car, having a mass of 1.2 Mg and centre of mass at G2 is placed on the platform, the natural period of oscillation becomes t1=4.58 s. Determine the moment of inertia of the car about an axis passing through G2.arrow_forwardi need the answer quicklyarrow_forward
- The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration KG=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 8=0°. The spring's length at the state 2 is L2=4 m. (11) The angular velocity at the state 2?_ _(rad/s) (two decimal places) 111441 L₂ State 2 State 1arrow_forwardThe wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration KG=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 0-0°. The spring's length at the state 2 is L2=4 m. (12) The kinetic energy at the state 2? (N-m) (two decimal places) LLLLKAL 2₂ तो State 2 Li State 1arrow_forwardThe wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration KG=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 0-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 8=0°. The spring's length at the state 2 is L2=4 m. (kg-m²) (two (8) The mass moment of inertial about the mass center G is IG= decimal places) HILAI L₂ State 2 State 1arrow_forward
- The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration KG=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 8-0°. The spring's length at the state 2 is L2=4 m. (2) If the mass center G is set as the origin (datum), the gravitational potential energy at the state 2 is (two decimal places) HILAI ܪܐ 717 State 2 State 1arrow_forwardThe wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration KG=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 8-0°. The spring's length at the state 2 is L2=4 m. (5) The stretched spring length of the spring at the state 2 is_ places) HULK ܪܐ TG नेता State 2 State 1 _(m) (two decimalarrow_forwardThe 3.0 kg pendulum with mass center G is pivoted at A to the ficed support CA. It has a radius of gyration of 425 mm about O-0 and swings through an amplitude 0 pendulum is in the extreme position, calculate the moments Mx, M, and M, applied by the base support to the column at C. (M, = -5.64NM, M, = 1.976NM) 60°. For the instant when the 200 mm 400 mm 500 mmarrow_forward
- Can anyone help me with this questionarrow_forwardCan you help with this one?arrow_forwardThe wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m. (7) The instantaneous center of zero velocity (IC) is A. Point A B. Point O C. Point Garrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Undamped Free Vibration of SDOF (1/2) - Structural Dynamics; Author: structurefree;https://www.youtube.com/watch?v=BkgzEdDlU78;License: Standard Youtube License