EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
14th Edition
ISBN: 9780133976588
Author: HIBBELER
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22.6, Problem 62P
To determine
The amplitude of the steady state vibration of the beam.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A block having a weight of 8 lb is suspended from a spring having a stiffness k = 40 Ib/ft. If the block is pushed y = 0.4 ft upward from its equilibrium position and then released from rest. What is the amplitude of the vibration? Assume that positive displacement is downward
machine mounted on elastic supports, is free
to vibrate vertically. The machine has a mass
of 40 kg and rotor out-of-balance effects are
equivalent to 2 kg at 150 mm radius.
Resonance occurs when the machine is run at
621 rpm. the amplitude of vibration at this
speed being 45 mm. Determine the amplitude
when running at 500 rpm and find the angular
position of the out-of-balance mass when the
machine is at its highest position during
vibration.
A block having a weight of 8 lb is suspended from a spring having a stiffness k = 40 Ib/ft. If the block is pushed y = 0.2 ft upward from its equilibrium position and then released from rest. What is the natural frequency of the vibration? Assume that positive displacement is downward.
Chapter 22 Solutions
EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
Ch. 22.1 - A spring is stretched 175 mm by an 8-kg block. If...Ch. 22.1 - Prob. 2PCh. 22.1 - A spring is stretched 200 mm by a 15-kg block. If...Ch. 22.1 - When a 20-lb weight is suspended from a spring,...Ch. 22.1 - Prob. 5PCh. 22.1 - Prob. 6PCh. 22.1 - Prob. 7PCh. 22.1 - Prob. 8PCh. 22.1 - A 3-kg block is suspended from a spring having a...Ch. 22.1 - Prob. 10P
Ch. 22.1 - Prob. 11PCh. 22.1 - 22-12. Determine the natural period of vibration...Ch. 22.1 - The body of arbitrary shape has a mass m, mass...Ch. 22.1 - Determine the torsional stiffness k, measured in...Ch. 22.1 - Prob. 15PCh. 22.1 - Prob. 16PCh. 22.1 - If the natural periods of oscillation of the...Ch. 22.1 - Prob. 18PCh. 22.1 - Prob. 19PCh. 22.1 - A uniform board is supported on two wheels which...Ch. 22.1 - If the wire AB is subjected to a tension of 20 lb,...Ch. 22.1 - The bar has a length l and mass m. It is supported...Ch. 22.1 - The 20-kg disk, is pinned at its mass center O and...Ch. 22.1 - Prob. 24PCh. 22.1 - If the disk in Prob. 22-24 has a mass of 10 kg,...Ch. 22.1 - Prob. 26PCh. 22.1 - Prob. 27PCh. 22.1 - Prob. 28PCh. 22.1 - Prob. 29PCh. 22.2 - Determine the differential equation of motion of...Ch. 22.2 - Determine the natural period of vibration of the...Ch. 22.2 - Determine the natural period of vibration of the...Ch. 22.2 - Prob. 33PCh. 22.2 - Determine the differential equation of motion of...Ch. 22.2 - Prob. 35PCh. 22.2 - Prob. 36PCh. 22.2 - Prob. 37PCh. 22.2 - Prob. 38PCh. 22.2 - Prob. 39PCh. 22.2 - If the slender rod has a weight of 5 lb, determine...Ch. 22.6 - If the block-and-spring model is subjected to the...Ch. 22.6 - Prob. 42PCh. 22.6 - A 4-lb weight is attached to a spring having a...Ch. 22.6 - Prob. 44PCh. 22.6 - Prob. 45PCh. 22.6 - Prob. 46PCh. 22.6 - Prob. 47PCh. 22.6 - Prob. 48PCh. 22.6 - Prob. 49PCh. 22.6 - Prob. 50PCh. 22.6 - The 40-kg block is attached to a spring having a...Ch. 22.6 - The 5kg circular disk is mounted off center on a...Ch. 22.6 - Prob. 53PCh. 22.6 - Prob. 54PCh. 22.6 - Prob. 55PCh. 22.6 - Prob. 56PCh. 22.6 - Prob. 57PCh. 22.6 - Prob. 58PCh. 22.6 - Prob. 59PCh. 22.6 - The 450-kg trailer is pulled with a constant speed...Ch. 22.6 - Prob. 61PCh. 22.6 - Prob. 62PCh. 22.6 - Prob. 63PCh. 22.6 - The spring system is connected to a crosshead that...Ch. 22.6 - Prob. 65PCh. 22.6 - Prob. 66PCh. 22.6 - Prob. 67PCh. 22.6 - The 200-lb electric motor is fastened to the...Ch. 22.6 - Prob. 69PCh. 22.6 - If two of these maximum displacements can be...Ch. 22.6 - Prob. 71PCh. 22.6 - Prob. 72PCh. 22.6 - Prob. 73PCh. 22.6 - Prob. 74PCh. 22.6 - Prob. 75PCh. 22.6 - Prob. 76PCh. 22.6 - Prob. 77PCh. 22.6 - Prob. 78PCh. 22.6 - Prob. 79P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The uniform beam is supported at its ends by two springs A and B, each having the same stiffness k. When nothing is supported on the beam, it has a period of vertical vibration of 0.83 s. If a 50-kg mass is placed at its center, the period of vertical vibration is 1.52 s. Compute the stiffness of each spring and the mass of the beam. Ok k = 305 N/m and mB Ok k = 408 N/m and mB k = 609 N/m and mB = 2 n - - O10 11 11Ն ՆԱ B 1 = हarrow_forwardA 2-lb weight is suspended from a spring having a stiffness k = 2 lb/in. If the weight is pushed 1 in. upward from its equilibrium position and then released from rest, determine the equation which describes the motion. What is the amplitude and the natural frequency of the vibration?arrow_forwardAn undamped 2.11 kg horizontal spring oscillator has a spring constant of 21.9 N/m. While oscillating, it is found to have a speed of 2.49 m/s as it passes through its equilibrium position. What is its amplitude A of oscillation? A = What is the oscillator's total mechanical energy Eot as it passes through a position that is 0.649 of the amplitude away from the equilibrium position? Etot = about us careers privacy policy terms of use contact us helparrow_forward
- Solve the problem. A particle is attached to a spring that creates a vibration with a frequency of 8 Hz. Determine the period of vibrations and the angular frequency.arrow_forwardThe 0.2 kg mass is suspended from a rigid frame. Pin A at the end ofarm OA engages a slot in the frame, causing the frame to oscillate in the verticaldirection as the arm turns. If the angular velocity of OA is ω=35 rad/s, determinethe amplitude of the steady-state vibration of the weight relative to the frame.arrow_forwardThe spring mounted mass is driven by the force F = 100 sin wt. Calculate the two values of w for which the amplitude of the steady-state vibration is 50 mm. k = 5 kN/m m = 2 kg|arrow_forward
- 3. A spring with spring constant 20N/m is attached to a 5kg mass with negligible friction. Determine the period, natural frequency, amplitude, and phase angle that the spring mass system will oscillate at initial displacement and velocity of 0.2m and zero respectively. A = Wn = T =arrow_forwardAn electric motor with a mass of 20 kg is placed in the middle of a beam that is jointly connected on both sides. Rotor its unbalance is equivalent to a mass of 0.3 kg at a distance of 0.020 m from the axis of rotation. Due to the electric motor force acting on the beam t Sin F F 0 . The rotor is rotating at an angular speed of = 40 rad / sec. Engine under the influence of force Find the displacement amplitude at the point where it is located (in the middle). The beam mass will be neglected. The beam has a modulus of elasticity E = 200000000000 N / m2 (200 GPa).arrow_forwardDetermine the differential equation of motion for the double pendulum shown in terms of12anduu where 12u and u are the horizontal distances of the masses from the leftmost verticalline that makes angle 1 from it. Find the natural frequencies, the ratios of the amplitudes, and thelocation of the nodes for the two modes of vibration. Assume m1=m2=m, and l1 =l2 = l=arrow_forward
- The block (mass not given) is subjected to the force F = (501 sin(5.9t)) N, where t is in seconds. The spring constant (of each of the springs) is k = 342 N/m. The damping ratio is c/c. = 0.75. If the natural period of vibrations is T, = 0.98 s, what is the amplitude (in meters) of the steady- state vibrations? k k m Farrow_forwardWeight W = mg k2 V p = jacking force For the structure given above, assume that the weight of the roof is 3500 kN and k=7000 kN/m. If the system is set into free vibration with the initial conditions u(0)= 5mm and (0) = 15 cm/s, determine the displacement and velocity at t = 1.0s, assuming: a. Undamped system b. c 500 kN.sec/marrow_forwardThe block (mass not given) is subjected to the force F = (910 sin(5.3t)) N, where t is in seconds. The spring constant (of each of the springs) is k = 347 N/m. The damping ratio is c/cc = 0.69. If the natural frequency of vibrations is fn = 1.02 Hz, what is the amplitude (in meters) of the steady-state vibrations? Choose the correct answer: a) There is not enough information to solve b) 910.000 c) 1.107 d) 2.215 e) 0.049arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license