EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
14th Edition
ISBN: 9780133976588
Author: HIBBELER
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22.6, Problem 44P
To determine
The equation which describes the vertical motion of the block.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 2-1b collar is released from rest at A and slides down along the smooth rod as shown in (Figure 1).
Figure
2 ft
www.
Part A
If the attached spring has a stiffness 5 lb/ft, determine its unstretched length so that it does not allow the collar to leave contact with the top surface of the rod until 0= 60°.
Express your answer in feet to three significant figures.
4 =
Submit
VO
Provide Feedback
ΑΣΦ
Request Answer
A
?
ft
The system shown below consists of a uniform disk D that has a mass of mp = 3.0
kg and a radius of r = 0.5 meters. The disk is connected by a massless cable to a
block. The system is released from rest and the disk starts rolling without sliding
with the angular acceleration of a = 24 rad in the clockwise direction. Determine
the tension developed in the cable (in Newtons) at this instant. Consider 0 = 30°
and g
10 *
mp
The 10 N cylinder moves in a frictionless pipe. Spring constants are k1 = 150 N / m and k2 = 200 N / m. When the system is at rest, d = 0.5 m. (d is the distance from the right end of the arc k2). The system rotates around a fixed z-axis. Find the constant velocity of the cylinder for d = 0.20 m?
Chapter 22 Solutions
EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
Ch. 22.1 - A spring is stretched 175 mm by an 8-kg block. If...Ch. 22.1 - Prob. 2PCh. 22.1 - A spring is stretched 200 mm by a 15-kg block. If...Ch. 22.1 - When a 20-lb weight is suspended from a spring,...Ch. 22.1 - Prob. 5PCh. 22.1 - Prob. 6PCh. 22.1 - Prob. 7PCh. 22.1 - Prob. 8PCh. 22.1 - A 3-kg block is suspended from a spring having a...Ch. 22.1 - Prob. 10P
Ch. 22.1 - Prob. 11PCh. 22.1 - 22-12. Determine the natural period of vibration...Ch. 22.1 - The body of arbitrary shape has a mass m, mass...Ch. 22.1 - Determine the torsional stiffness k, measured in...Ch. 22.1 - Prob. 15PCh. 22.1 - Prob. 16PCh. 22.1 - If the natural periods of oscillation of the...Ch. 22.1 - Prob. 18PCh. 22.1 - Prob. 19PCh. 22.1 - A uniform board is supported on two wheels which...Ch. 22.1 - If the wire AB is subjected to a tension of 20 lb,...Ch. 22.1 - The bar has a length l and mass m. It is supported...Ch. 22.1 - The 20-kg disk, is pinned at its mass center O and...Ch. 22.1 - Prob. 24PCh. 22.1 - If the disk in Prob. 22-24 has a mass of 10 kg,...Ch. 22.1 - Prob. 26PCh. 22.1 - Prob. 27PCh. 22.1 - Prob. 28PCh. 22.1 - Prob. 29PCh. 22.2 - Determine the differential equation of motion of...Ch. 22.2 - Determine the natural period of vibration of the...Ch. 22.2 - Determine the natural period of vibration of the...Ch. 22.2 - Prob. 33PCh. 22.2 - Determine the differential equation of motion of...Ch. 22.2 - Prob. 35PCh. 22.2 - Prob. 36PCh. 22.2 - Prob. 37PCh. 22.2 - Prob. 38PCh. 22.2 - Prob. 39PCh. 22.2 - If the slender rod has a weight of 5 lb, determine...Ch. 22.6 - If the block-and-spring model is subjected to the...Ch. 22.6 - Prob. 42PCh. 22.6 - A 4-lb weight is attached to a spring having a...Ch. 22.6 - Prob. 44PCh. 22.6 - Prob. 45PCh. 22.6 - Prob. 46PCh. 22.6 - Prob. 47PCh. 22.6 - Prob. 48PCh. 22.6 - Prob. 49PCh. 22.6 - Prob. 50PCh. 22.6 - The 40-kg block is attached to a spring having a...Ch. 22.6 - The 5kg circular disk is mounted off center on a...Ch. 22.6 - Prob. 53PCh. 22.6 - Prob. 54PCh. 22.6 - Prob. 55PCh. 22.6 - Prob. 56PCh. 22.6 - Prob. 57PCh. 22.6 - Prob. 58PCh. 22.6 - Prob. 59PCh. 22.6 - The 450-kg trailer is pulled with a constant speed...Ch. 22.6 - Prob. 61PCh. 22.6 - Prob. 62PCh. 22.6 - Prob. 63PCh. 22.6 - The spring system is connected to a crosshead that...Ch. 22.6 - Prob. 65PCh. 22.6 - Prob. 66PCh. 22.6 - Prob. 67PCh. 22.6 - The 200-lb electric motor is fastened to the...Ch. 22.6 - Prob. 69PCh. 22.6 - If two of these maximum displacements can be...Ch. 22.6 - Prob. 71PCh. 22.6 - Prob. 72PCh. 22.6 - Prob. 73PCh. 22.6 - Prob. 74PCh. 22.6 - Prob. 75PCh. 22.6 - Prob. 76PCh. 22.6 - Prob. 77PCh. 22.6 - Prob. 78PCh. 22.6 - Prob. 79P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A5 lbf weight is suspended froma vertical spring having a stiffness k = 50 lbf/ft. An impressed force F = 0.25 sin 8t lbę where t is in seconds is acting on the weight. Determine the equation of motion of the weight when it is pulled down 3 inches from the equilibrium position and released from rest.arrow_forwardThe following mass-and-spring system has stiffness matrix K. The system is set in motion from rest (x1′(0)=x2′(0)=0)in its equilibrium position (x1'(0)=x2'(0)=0) with the given external forces F1(t)=0and F2(t)=540 cos 4t acting on the masses m1and m2,respectively. Find the resulting motion of the system and describe it as a superposition of oscillations at three different frequencies. m1 m2 k1 k2 k3 x1 x2 K= −k1+k2 k2 k2 −k2+k3 m1=1, m2=2; k1=1, k2=2, k3=2 Find the resulting motion of the system. x1(t) = x2(t) = (Type exact answers, using radicals as needed.)arrow_forwardA spring is stretched 175 mm by an 8-kg block. If the block is displaced 100 mm downward from its equilibrium position and given a downward velocity of 1.50 ms, determine the differential equation which describes the motion. Assume that positive displacement is downward. Also determine the position of the block when t = 0.22 s. (Show free-body diagram of the system.)arrow_forward
- also determine the force exerted by loop ABCD on the block at point C is _____ N.arrow_forwardSubject: mechanicalarrow_forwardThe 2-1b collar is released from rest at A and slides down along the smooth rod as shown in (Figure 1). Figure 2 ft 1 of 1 Part A If the attached spring has a stiffness 4 lb/ft, determine its unstretched length so that it does not allow the collar to leave contact with the top surface of the rod until 0 = 60°. Express your answer in feet to three significant figures. [ΨΕ ΑΣΦ1 lo = Submit Provide Feedback Request Answer vec ? ftarrow_forward
- How much work is done by the force in the spring when the slender rod rotates from the position where e = 28" to the position where 0 = 63°? The spring has a stiffness of k = 157 N/m and is stretched by 0.21 m when e =0°. The spring is connected to a fixed wall, as well as the endpoint of the rod, as shown. The rod can rotate freely about the fixed pin support at O and AO remains horizontal during motion. Take 40= 1.77 m, which is also the length of the rod. Choose the correct answer. Hoeveel arbeid word deur die krag in die veer verrig wanneer die dun staaf vanaf die posisie waar 0 28 na die posisie waar 0 = 63° roteer? Die veer het 'n styfheid van k = 157 N/m en is 0.21 m uitgerek = wanneer 0 0°. Die veer is aan die vaste muur en die endpunt van die staaf verbind, soos aangetoon. Die staaf kan vrylik om die vaste penstut by O roteer en AO bly horisontaal tydens beweging. Neem AO 1.77 m, wat ook die lengte van die staaf is. Kies die korrekte antwoord. 0. Select one: O-271 Joule 244…arrow_forwardThe position of the small 0.68-kg blocks in the smooth radial slots in the disk which rotates about a vertical axis at O is used to activate a speed-control mechanism. If each block moves from r = 162 mm to r = 200 mm while the speed of the disk changes slowly from 272 rev/min to 382 rev/min, design the spring by calculating the spring constant k of each spring. The springs are attached to the inner ends of the slots and to the blocks.arrow_forwardThe system is released from rest. The body A has 55 slug and the body B has 99 slug. The spring constant is k =64 lbf/ft and the tension in the spring when the system is released is 90 lbf. Concentrate the analysis when mass B has dropped 11 inches. Enter the initial spring deformation in ft. (not enter the units).arrow_forward
- For the same question what stiffnessk needed so the rod will stop smoothly on horizontal position 3 Answer:arrow_forwardPIN 500 N/m, = Block A has a mass of mд = 3 kg and is firmly attached to a spring with spring constant k which is originally uncompressed. Then, block B with a mass of m³ = 2 kg is pressed against A with a steady force of F 100 N until static equilibrium is reached, as shown in the above figure Determine Suddenly, force F is removed. If B has a coefficient of kinetic friction of μ = 0.2 with the ground (while A's contact with the ground is frictionless). F = a. The force A exerts on B just before the force F is removed b. The force A exerts on B just after the force F is removed c. The speed of block B when it first begins to separate from A d. The distance block B travels before it again comes to rest F = || A V= d = N N B m S m Farrow_forwardThe 2-1b block is released from rest at A slides down along the smooth cylindrical surface. The attached spring has a stiffness k = 2.6 lb/ft . (Figure 1) Figure Part A lo = μĂ Value 2 ft Determine its unstretched length so that it does not allow the block to leave the surface until () = 60 ° . Express your answer to three significant figures and include the appropriate units. Submit Request Answer Units wwwwwww. ? < 1 of 1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license