PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 22, Problem 81P

a.

To determine

The mass of the particle.

The mass of the particle is m=0.997kg

Given:

The charge of the ring Q=5μC

The charge of the particle q=-5μC

The radius of the ring a=8.0cm

The frequency of oscillation f=3.34Hz

Also, that the displacement is much small than the radius of the ring x<<a

Formula Used:

Electric field by a ring as a function of x.

  E=kqx(x2+a2)32

E is the electric field.

k is a constant.

q is the charge of the ring.

a is the radius of the ring.

x is the distance from center of the ring.

Calculations:

  E=kQx(x2+a2)32

  E=kQx[a2(1+x2a2)]32

As x<<a

  x2a20

  EkQa3x

Now force is

  F=qE=kqQa3x

As the negatively charged particle experiences a restoring force, the motion will be a simple harmonic motion.

  F=kqQa3x

  F=md2xdt2

Equating

  kqQa3x=md2xdt2

  d2xdt2+kqQma3x=0

Relating with the acceleration of a particle executing a simple harmonic motion.

  d2xdt2=ω2x(t)

This is the differential equation of a simple harmonic motion.

Hence

  ω=kqQma3

Solving for m

  m=kqQω2a3

  ω=2πf

  m=kqQ4π2f2a3

Substituting the values in the equation.

  m=(8.988×109Nm2/C2)(5μC)(5μC)4π2(3.34Hz)2(.08m)3m=0.997kg

Conclusion:

The mass of the particle is m=0.997kg

b.

The frequency of the motion if the radius of the ring is doubled.

The frequency is f=1.2Hz .

Given:

The frequency is doubled.

Formula Used:

Angular frequency is

  ω=kqQma3

k is a constant.

q is the charge of the ring.

a is the radius of the ring.

x is the distance from center of the ring.

Calculations:

  ω=kqQma3

Now comparing the angular frequency when the radius is doubled.

  ω'ω=kqQm(2a)3kqQm(a)3=18

  ω'ω=2πf'2πf=f'f

  f'f=18

  f'=f8

  f'=3.4Hz8

  f'=1.2Hz

Conclusion:

The frequency is f=1.2Hz .

b.

To determine

The frequency of the motion if the radius of the ring is doubled.

The frequency is f=1.2Hz .

Given:

The frequency is doubled.

Formula Used:

Angular frequency is

  ω=kqQma3

k is a constant.

q is the charge of the ring.

a is the radius of the ring.

x is the distance from center of the ring.

Calculations:

  ω=kqQma3

Now comparing the angular frequency when the radius is doubled.

  ω'ω=kqQm(2a)3kqQm(a)3=18

  ω'ω=2πf'2πf=f'f

  f'f=18

  f'=f8

  f'=3.4Hz8

  f'=1.2Hz

Conclusion:

The frequency is f=1.2Hz .

Blurred answer
Students have asked these similar questions
What fuel economy should be expected from a gasoline powered car that encounters a total of 443N of resistive forces while driving down the road?  (Those forces are from air drag, rolling resistance and bearing losses.) Assume a 30% thermodynamic efficiency.
No chatgpt pls will upvote
12. What is the angle between two unit vectors if their dot product is 0.5?

Chapter 22 Solutions

PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY