PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 26P
To determine
The electric field at the center of the base of a hemispherical shell.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A very thin spherical shell of radius a has a total charge of Q distributed uniformly over its surface . Find the electric field at points inside and outside the shell.
A line of charge is surrounded by another charged cylindrical shell. The line and the shell are
concentric. Charge density of the line is 1 = -6 µC/m. Cylindrical shell is made up of a conducting material
with inner radius 7 cm and outer radius 10 cm, and cylinder height 25 cm. The charge on the shell is Q = 4 µC.
11.
a) Find the electric field at points 3 cm away from the line.
b) Show the charge distribution of the cylinder and find the electric field at a point inside the shell.
c) Find the electric field at a point 12 cm from the center.
25cm
Answers: a) E = 3.6 x106 N/C (radially inward); b) E=0 ;
d) E= 1.5 x 106 N/C (radially outward)
-1.5 μC
+1.5 µC
42.5 μC
A non-uniformly charged semicircle of radius R=31.4 cm lies in the xy plane, centered at the origin, as shown. The charge density varies as the angle θ (in radians) according to λ=4.15θ, where λ has units of μC.
a) What is the total charge on the semicircle?
b) What is the y component of the electric field at the origin?
Chapter 22 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 22 - Prob. 1PCh. 22 - Prob. 2PCh. 22 - Prob. 3PCh. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - Prob. 9PCh. 22 - Prob. 10P
Ch. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Prob. 15PCh. 22 - Prob. 16PCh. 22 - Prob. 17PCh. 22 - Prob. 18PCh. 22 - Prob. 20PCh. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - Prob. 23PCh. 22 - Prob. 24PCh. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Prob. 29PCh. 22 - Prob. 30PCh. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - Prob. 39PCh. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - Prob. 43PCh. 22 - Prob. 44PCh. 22 - Prob. 45PCh. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - Prob. 48PCh. 22 - Prob. 49PCh. 22 - Prob. 50PCh. 22 - Prob. 51PCh. 22 - Prob. 52PCh. 22 - Prob. 53PCh. 22 - Prob. 54PCh. 22 - Prob. 55PCh. 22 - Prob. 56PCh. 22 - Prob. 57PCh. 22 - Prob. 58PCh. 22 - Prob. 59PCh. 22 - Prob. 60PCh. 22 - Prob. 61PCh. 22 - Prob. 62PCh. 22 - Prob. 63PCh. 22 - Prob. 64PCh. 22 - Prob. 65PCh. 22 - Prob. 66PCh. 22 - Prob. 67PCh. 22 - Prob. 68PCh. 22 - Prob. 69PCh. 22 - Prob. 70PCh. 22 - Prob. 71PCh. 22 - Prob. 72PCh. 22 - Prob. 73PCh. 22 - Prob. 74PCh. 22 - Prob. 75PCh. 22 - Prob. 76PCh. 22 - Prob. 77PCh. 22 - Prob. 78PCh. 22 - Prob. 79PCh. 22 - Prob. 80PCh. 22 - Prob. 81PCh. 22 - Prob. 82PCh. 22 - Prob. 83PCh. 22 - Prob. 84PCh. 22 - Prob. 85PCh. 22 - Prob. 86PCh. 22 - Prob. 87PCh. 22 - Prob. 88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forwardTwo infinite, nonconducting sheets of charge are parallel to each other as shown in Figure P19.73. The sheet on the left has a uniform surface charge density , and the one on the right hits a uniform charge density . Calculate the electric field at points (a) to the left of, (b) in between, and (c) to the right of the two sheets. (d) What If? Find the electric fields in all three regions if both sheets have positive uniform surface charge densities of value .arrow_forwardA long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire. The wire has a charge per unit length of , and the cylinder has a net charge per unit length of 2. From this information, use Gausss law to find (a) the charge per unit length on the inner surface of the cylinder, (b) the charge per unit length on the outer surface of the cylinder, and (c) the electric field outside the cylinder a distance r from the axis.arrow_forward
- The electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forwarda total charge +q is distributed over a plastic line in square shape with sides are equal to 2a. The line is so thin that thickness is negligible. The square is positioned to the center. Find the electric field at point P which is positioned away from the center.arrow_forwardA charge of uniform linear density 2.80 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.80 cm, outer radius = 9.20 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.0 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Gaussian cylinder Shell Rod (a) (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forward
- Compute the magnitude of the electric field at the point x = 30 cm on the x-axis.arrow_forwardA charge of uniform linear density 2.80 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.20 cm, outer radius = 10.6 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.8 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Please Helparrow_forwardA charge of uniform linear density 2.20 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.40 cm, outer radius 10.0 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.4 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Stell-arrow_forward
- A charge of uniform linear density 2.80 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 4.60 cm, outer radius = 9.40 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 14.0 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell?arrow_forwardA charge of uniform linear density 2.40 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.60 cm, outer radius = 9.20 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 14.8 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Gaussian cylinder Shell Rod- (a)arrow_forwardCharge of a uniform density (11 pC/m?) is distributed over the entire xy plane. A charge of uniform density (6 pC/m2) is distributed over the parallel plane defined by z = 2.0 m. Determine the magnitude of the electric field for any point with z = 3.0 m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY