PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 68P
To determine
The electric field at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure shows a section of a long, thin-walled metal tube of radius R = 4.45 cm, with a charge per unit length λ =4.55 x 108 C/m.
What is the magnitude E of the electric field at radial distance (a) r-1.72 cm and (b) r= 12.0 cm.
(a) Number
(b) Number i
Units
Units
Charge of a uniform density (11 pC/m?) is distributed over the entire xy plane. A charge of uniform density (6 pC/m2) is distributed over the parallel plane defined by z = 2.0 m. Determine the magnitude of the electric field for any point with z = 3.0 m.
A thick insulating cylindircal shell of inner radius a=2.9R and outer radius b=6.8R has a uniform
charge density p.
PR
What is the magnitude of the electric field at r=8.3 R ? Express your answer using one decimal place in units of
Chapter 22 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 22 - Prob. 1PCh. 22 - Prob. 2PCh. 22 - Prob. 3PCh. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - Prob. 9PCh. 22 - Prob. 10P
Ch. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Prob. 15PCh. 22 - Prob. 16PCh. 22 - Prob. 17PCh. 22 - Prob. 18PCh. 22 - Prob. 20PCh. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - Prob. 23PCh. 22 - Prob. 24PCh. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Prob. 29PCh. 22 - Prob. 30PCh. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - Prob. 39PCh. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - Prob. 43PCh. 22 - Prob. 44PCh. 22 - Prob. 45PCh. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - Prob. 48PCh. 22 - Prob. 49PCh. 22 - Prob. 50PCh. 22 - Prob. 51PCh. 22 - Prob. 52PCh. 22 - Prob. 53PCh. 22 - Prob. 54PCh. 22 - Prob. 55PCh. 22 - Prob. 56PCh. 22 - Prob. 57PCh. 22 - Prob. 58PCh. 22 - Prob. 59PCh. 22 - Prob. 60PCh. 22 - Prob. 61PCh. 22 - Prob. 62PCh. 22 - Prob. 63PCh. 22 - Prob. 64PCh. 22 - Prob. 65PCh. 22 - Prob. 66PCh. 22 - Prob. 67PCh. 22 - Prob. 68PCh. 22 - Prob. 69PCh. 22 - Prob. 70PCh. 22 - Prob. 71PCh. 22 - Prob. 72PCh. 22 - Prob. 73PCh. 22 - Prob. 74PCh. 22 - Prob. 75PCh. 22 - Prob. 76PCh. 22 - Prob. 77PCh. 22 - Prob. 78PCh. 22 - Prob. 79PCh. 22 - Prob. 80PCh. 22 - Prob. 81PCh. 22 - Prob. 82PCh. 22 - Prob. 83PCh. 22 - Prob. 84PCh. 22 - Prob. 85PCh. 22 - Prob. 86PCh. 22 - Prob. 87PCh. 22 - Prob. 88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A uniform linear charge of 2.0 nC/m is distributed along the x axis from x = 0 to x = 3 m. Which of the following integrals is correct for the y component of the electric field at y = 5m on the y axis?arrow_forwardAn isolated very long metallic rod with a uniform circular cross-section of radius 0.55 mm has a constant charge per unit length of 2.25 × 10⁻⁸ C/m. Find the electric field magnitudes at distances (a) 0.25 mm and (b) 0.75 mm, from the longitudinal axis of the rod.arrow_forwardCharge Q is uniformly distributed in a sphere of radius R. (a) What fraction of the charge is contained within the radius r = R/2.00? (b) What is the ratio of the electric field magnitude at r =R/2.00 to that on the surface of the sphere?arrow_forward
- A finite line of charge with linear charge density 2 = 2.30 x 10- C/m and length L = 0.522 m is located along the x-axis (from x = 0 to x = L). A point charge of q = -7.10 × 10¬' C is located at the point xo = 1.14 m, Yo Yo = 4.00 m. Find the electric field (magnitude and direction as measured from the +x-axis) at the point P, which is located + + + L along the x-axis at xp = 10.10 m. The Coulomb force constant is k = 1/(4zle0) = 8.99 × 10° (N-m²)/C². E = N/C =arrow_forwardCharge of a uniform density (7 pC/m2) is distributed over the entire xy plane. A charge of uniform density (10 pC/m2) is distributed over the parallel plane defined by z = 2.0 m. Determine the magnitude of the electric field for any point with z = 3.0 m.arrow_forwardThe charge density of a non-uniformly charged sphere of radius 1.0 m is given as: For rs1.0 m; p(r)= 2po(1-2 r/3) For r>1.0 m; p(r)= 0, where r is in meters. What is the value of r in meters for which the electric field is maximum? 0.25 0.50 0.75 1.0 2.0arrow_forward
- A charge of q = 2.10 ✕ 10−9 C is spread evenly on a thin metal disk of radius 0.120 m. HINT (a)Calculate the charge density (in C/m2) on the disk. ___________C/m2 (b)Find the magnitude of the electric field (in N/C) just above the center of the disk, neglecting edge effects and assuming a uniform distribution of charge. ____________N/Carrow_forwardA line of charge runs parallel to a sheet of charge, separated by a distance d = 28 cm. If the charge density of the line of charge is λ = 15 x 10-6 c/m and the charge density of the sheet of charge is o = 12 x 10-6 c/m², find the magnitude of the electric field at the midpoint between them. x 106 N/C E =arrow_forwardA thin, square, conducting plate 47.0 cm on a side lies in the xy plane. A total charge of 3.50 10-8 C is placed on the plate. You may assume the charge density is uniform. (a) Find the charge density on each face of the plate. C/m2(b) Find the electric field just above the plate. magnitude N/C direction (c) Find the electric field just below the plate. magnitude N/C directionarrow_forward
- An infinitely long charged wire produces an electric field of magnitude 4.47 103 N/C at a distance of 52.7 cm perpendicular to the wire. The direction of the electric field is toward the wire. (You may enter your calculation using scientific notation.) (a) What is the linear charge density on the wire? C/m (b) How many electrons per unit length are on the wire in electrons per meter?arrow_forwardCharge of uniform volume density r = 1.2 nC/m3 fills an infinite slab between x=-5.0 cm and x=+5.0 cm.What is the magnitude of the electric field at any point with the coordinate (a) x = 4.0 cm and (b) x = 6.0 cm?arrow_forward(a) What total (excess) charge q must the disk in the figure have for the electric field on the surface of the disk at its center to have the magnitude 3.0 × 106 N/C, the E value at which air breaks down electrically, producing sparks? Take the disk radius as 3.0 cm. (b) Suppose each surface atom has an effective cross-sectional area of 0.015 nm2. How many atoms are needed to make up the disk surface? (c) The charge calculated in (a) results from some of the surface atoms having one excess electron. What fraction of these atoms must be so charged?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY