PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 22, Problem 77P

a.

To determine

The magnitude and the direction of the electric field at x=0.40m .

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

Given:

  PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS, Chapter 22, Problem 77P , additional homework tip  1

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

As the point is inside the sphere the electric field is zero.

  Eshpere=0

Electric field at point 1 due to plane 1

Substituting values

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +0

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^

The magnitude of the electric field is

   E=(x2+y2)

  E=(112.9kN/C)2+(169.4kN/C)2

  E=203.6kN/C2

Direction:

  θ=tan1(yx)

  θ=tan1(169.4kN/C112.9kN/C)=56.31°

Conclusion:

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

b.

The magnitude and the direction of the electric field at x=2.50m .

The electric field E=263kN/C pointing at θ=153° from the x axis.

Given:

  PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS, Chapter 22, Problem 77P , additional homework tip  2

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

  E =(kQspherer2)r^ where Q is the charge in the sphere.

Where r^ is a unit vector pointing from (1.0m,-0.6m) to (2.50m,0)

  Qsphere=σAsphere

  =4πσR2

  Qsphere=4π(3.0μC/m2)(1.0m)2

  Qsphere=37.30μC

  r^=0.9285 i ^+0.3714j ^

  Esphere=(8.988×109N.m2/C2)(37.70μC)(1.616m)2r^

  Esphere=(129.8kN/C)(0.9285 i ^+0.3714j ^)

  Esphere=(120.5kN/C) i ^+(-48.22kN/C)j ^

Electric field at point 1 due to plane 1

Substituting values in the formula E=σ2εor^

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +(120.5kN/C) i ^+(-48.22kN/C)j ^

  E=(233.5kN/C) i ^ +(121.2kN/C)j ^

The magnitude of the electric field is

  E=(x2+y2)

  E=(233.5kN/C)2+(121.2kN/C)2

  E=263kN/C

Direction:

  θ=tan1(yx)

  θ=tan1(121.2kN/C-233.5kN/C)=153°

Conclusion:

The electric field E=263kN/C pointing at θ=153° from the x axis.

a.

Expert Solution
Check Mark

Answer to Problem 77P

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

Explanation of Solution

Given:

  PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS, Chapter 22, Problem 77P , additional homework tip  3

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

As the point is inside the sphere the electric field is zero.

  Eshpere=0

Electric field at point 1 due to plane 1

Substituting values

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +0

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^

The magnitude of the electric field is

   E=(x2+y2)

  E=(112.9kN/C)2+(169.4kN/C)2

  E=203.6kN/C2

Direction:

  θ=tan1(yx)

  θ=tan1(169.4kN/C112.9kN/C)=56.31°

Conclusion:

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

b.

To determine

The magnitude and the direction of the electric field at x=2.50m .

The electric field E=263kN/C pointing at θ=153° from the x axis.

Given:

  PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS, Chapter 22, Problem 77P , additional homework tip  4

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

  E =(kQspherer2)r^ where Q is the charge in the sphere.

Where r^ is a unit vector pointing from (1.0m,-0.6m) to (2.50m,0)

  Qsphere=σAsphere

  =4πσR2

  Qsphere=4π(3.0μC/m2)(1.0m)2

  Qsphere=37.30μC

  r^=0.9285 i ^+0.3714j ^

  Esphere=(8.988×109N.m2/C2)(37.70μC)(1.616m)2r^

  Esphere=(129.8kN/C)(0.9285 i ^+0.3714j ^)

  Esphere=(120.5kN/C) i ^+(-48.22kN/C)j ^

Electric field at point 1 due to plane 1

Substituting values in the formula E=σ2εor^

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +(120.5kN/C) i ^+(-48.22kN/C)j ^

  E=(233.5kN/C) i ^ +(121.2kN/C)j ^

The magnitude of the electric field is

  E=(x2+y2)

  E=(233.5kN/C)2+(121.2kN/C)2

  E=263kN/C

Direction:

  θ=tan1(yx)

  θ=tan1(121.2kN/C-233.5kN/C)=153°

Conclusion:

The electric field E=263kN/C pointing at θ=153° from the x axis.

b.

Expert Solution
Check Mark

Answer to Problem 77P

The electric field E=263kN/C pointing at θ=153° from the x axis.

Explanation of Solution

Given:

  PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS, Chapter 22, Problem 77P , additional homework tip  5

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

  E =(kQspherer2)r^ where Q is the charge in the sphere.

Where r^ is a unit vector pointing from (1.0m,-0.6m) to (2.50m,0)

  Qsphere=σAsphere

  =4πσR2

  Qsphere=4π(3.0μC/m2)(1.0m)2

  Qsphere=37.30μC

  r^=0.9285 i ^+0.3714j ^

  Esphere=(8.988×109N.m2/C2)(37.70μC)(1.616m)2r^

  Esphere=(129.8kN/C)(0.9285 i ^+0.3714j ^)

  Esphere=(120.5kN/C) i ^+(-48.22kN/C)j ^

Electric field at point 1 due to plane 1

Substituting values in the formula E=σ2εor^

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +(120.5kN/C) i ^+(-48.22kN/C)j ^

  E=(233.5kN/C) i ^ +(121.2kN/C)j ^

The magnitude of the electric field is

  E=(x2+y2)

  E=(233.5kN/C)2+(121.2kN/C)2

  E=263kN/C

Direction:

  θ=tan1(yx)

  θ=tan1(121.2kN/C-233.5kN/C)=153°

Conclusion:

The electric field E=263kN/C pointing at θ=153° from the x axis.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You are working with a movie director and investigating a scene with a cowboy sliding off a tree limb and falling onto the saddle of a moving horse. The distance of the fall is several meters, and the calculation shows a high probability of injury to the cowboy from the stunt. Let's look at a simpler situation. Suppose the director asks you to have the cowboy step off a platform 2.55 m off the ground and land on his feet on the ground. The cowboy keeps his legs straight as he falls, but then bends at the knees as soon as he touches the ground. This allows the center of mass of his body to move through a distance of 0.660 m before his body comes to rest. (Center of mass will be formally defined in Linear Momentum and Collisions.) You assume this motion to be under constant acceleration of the center of mass of his body. To assess the degree of danger to the cowboy in this stunt, you wish to calculate the average force upward on his body from the ground, as a multiple of the cowboy's…
A box of mass m = 2.00 kg is released from rest at the top of an inclined plane as seen in the figure. The box starts out at height h =0.200 m above the top of the table, the table height is H = 2.00 m, and 0 = 41.0°. H m (a) What is the acceleration (in m/s²) of the box while it slides down the incline? m/s² (b) What is the speed (in m/s) of the box when it leaves the incline? m/s (c) At what horizontal distance (in m) from the end of the table will the box hit the ground? m (d) How long (in s) from when the box is released does it hit the ground? S (e) Does the box's mass affect any of your above answers? Yes No
(a) A sphere made of rubber has a density of 0.940 g/cm³ and a radius of 7.00 cm. It falls through air of density 1.20 kg/m³ and has a drag coefficient of 0.500. What is its terminal speed (in m/s)? m/s (b) From what height (in m) would the sphere have to be dropped to reach this speed if it fell without air resistance? m

Chapter 22 Solutions

PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY