PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 65P
(a)
To determine
The surface charge density and the electric field, on both sides of the squaresheet, at the surface and in the region
(b)
To determine
The surface charge density and the electric field on both sides of the square sheet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What total (excess) charge q must the disk in Fig. have for the electric field on the surface of the disk at its center to have magnitude 3.0 ×108 N/C, the E value at which air breaks down electrically, producing sparks? Take the disk radius as 2.5 cm. (b) Suppose each surface atom has an effective cross-sectional area of 0.015 nm2. How many atoms are needed to make up the disk surface? (c) The charge calculated in (a) results from some of the surface atoms having one excess electron. What fraction of these atoms must be so charged?
A thin, square, conducting plate 46.0 cm on a side lles in the xy plane. A total charge of 4.10 x 108 C is placed on the plate. You may assume the charge density is uniform.
(a) Find the charge density on each face of the plate.
C/m²
(b) Find the electric field just above the plate.
magnitude
N/C
direction -Select--
(c) Find the electric field just below the plate.
magnitude
N/C
direction
Need Help?
-Select-v
Read It
Master H
MeMehllllo
Chapter 22 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 22 - Prob. 1PCh. 22 - Prob. 2PCh. 22 - Prob. 3PCh. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - Prob. 9PCh. 22 - Prob. 10P
Ch. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Prob. 15PCh. 22 - Prob. 16PCh. 22 - Prob. 17PCh. 22 - Prob. 18PCh. 22 - Prob. 20PCh. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - Prob. 23PCh. 22 - Prob. 24PCh. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Prob. 29PCh. 22 - Prob. 30PCh. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - Prob. 39PCh. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - Prob. 43PCh. 22 - Prob. 44PCh. 22 - Prob. 45PCh. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - Prob. 48PCh. 22 - Prob. 49PCh. 22 - Prob. 50PCh. 22 - Prob. 51PCh. 22 - Prob. 52PCh. 22 - Prob. 53PCh. 22 - Prob. 54PCh. 22 - Prob. 55PCh. 22 - Prob. 56PCh. 22 - Prob. 57PCh. 22 - Prob. 58PCh. 22 - Prob. 59PCh. 22 - Prob. 60PCh. 22 - Prob. 61PCh. 22 - Prob. 62PCh. 22 - Prob. 63PCh. 22 - Prob. 64PCh. 22 - Prob. 65PCh. 22 - Prob. 66PCh. 22 - Prob. 67PCh. 22 - Prob. 68PCh. 22 - Prob. 69PCh. 22 - Prob. 70PCh. 22 - Prob. 71PCh. 22 - Prob. 72PCh. 22 - Prob. 73PCh. 22 - Prob. 74PCh. 22 - Prob. 75PCh. 22 - Prob. 76PCh. 22 - Prob. 77PCh. 22 - Prob. 78PCh. 22 - Prob. 79PCh. 22 - Prob. 80PCh. 22 - Prob. 81PCh. 22 - Prob. 82PCh. 22 - Prob. 83PCh. 22 - Prob. 84PCh. 22 - Prob. 85PCh. 22 - Prob. 86PCh. 22 - Prob. 87PCh. 22 - Prob. 88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The surface charge density on a long straight metallic pipe is . What is the electric field outside and inside the pipe? Assume the pipe has a diameter of 2a.arrow_forwardTwo parallel conducting plates, each of cross-sectional area 400 cm2, are 2.0 cm apart and uncharged. If 1.01012 electrons are transferred from one plate to the other, what are (a) the charge density on each plate? (b) The electric field between the plates?arrow_forwardWhat is the magnitude of the electric field just above the middle of a large, flat, horizontal sheet carrying a charge density of 98.0 nC/m2?arrow_forward
- A solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forwardRecall that in the example of a uniform charged sphere, p0=Q/(43R3). Rewrite the answers in terms of the total charge Q on the sphere.arrow_forwardCharge is distributed uniformly along a long straight wire. The electric field 5.00 cm from the wire is 20.0 N/C, directed radially outward towards the axis of symmetry. The linear charge density on the wire isarrow_forward
- (a) What total (excess) charge q must the disk in the figure have for the electric field on the surface of the disk at its center to have the magnitude 3.0 × 106 N/C, the E value at which air breaks down electrically, producing sparks? Take the disk radius as 3.0 cm. (b) Suppose each surface atom has an effective cross-sectional area of 0.015 nm2. How many atoms are needed to make up the disk surface? (c) The charge calculated in (a) results from some of the surface atoms having one excess electron. What fraction of these atoms must be so charged?arrow_forwardA conducting sphere of radius 0.01 m has a charge of 1 nC deposited in it. The magnitude of the electric field in N/C just inside the surface of the sphere is:arrow_forwardA continuous line of charge lies along the x axis, extending from x = +x0 to positive infinity. The line carries positive charge with a uniform linear charge density ?0. (a) What is the magnitude of the electric field at the origin?arrow_forward
- (a) A conducting sphere has charge Q and radius R. If theelectric field of the sphere at a distance r = 2R from the center of thesphere is 1400 N/C, what is the electric field of the sphere at r = 4R?(b) A very long conducting cylinder of radius R has charge per unitlength l. Let r be the perpendicular distance from the axis of the cylinder.If the electric field of the cylinder at r = 2R is 1400 N/C, whatis the electric field at r = 4R? (c) A very large uniform sheet of chargehas surface charge density s. If the electric field of the sheet has a valueof 1400 N>C at a perpendicular distance d from the sheet, what is theelectric field of the sheet at a distance of 2d from the sheet?arrow_forwardA charge of −30 μC is distributed uniformlythroughout a spherical volume of radius 10.0 cm.Determine the electric field due to this charge at a distanceof (a) 2.0 cm, (b) 5.0 cm, and (c) 20.0 cm from the centerof the sphere.arrow_forwardPoint P sets above an infinite line of charge 2 m in the positive z direction. The line of charge itself has a charge density ? of -5.0 x 10⁶ C/m. What is the magnitude of the electric field at point P?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY