Concept explainers
Derive the amino acid sequence that is coded for by each mRNA sequence.
- 5 CCA ACC UGG GUA GA,A 3
- 5 AUG UUU UUA UGG UGG 3
- 5 GUC GAC GAA CCG CAA 3
(a)
Interpretation:
Amino acid sequence responsible for the 5 CCA ACC UGG GUA GAA 3 mRNA code should be derived.
Concept Introduction:
Genetic code − DNA and RNA transform genetic information of the living cells through triplet code, which is a sequence of three nucleotides on DNA or RNA molecules codes for a specific amino acid in protein synthesis.
Answer to Problem 59P
Pro-Thr-Trp-Val-Glu
Explanation of Solution
Codons are written from 5 prime end (5) to 3 prime end (3) of mRNA. There is a unique triplet representation for a particular amino acid. Below mentioned table represent the relationship between nucleotides and amino acids.
The Genetic Code- Triplets in Messenger RNA
First Base (5' end) | Second Base | Third Base (3' end) | |||||||
U | C | A | G | ||||||
U | UUU | Phe | UCU | Ser | UAU | Tyr | UGU | Cys | U |
UUC | Phe | UCC | Ser | UAC | Tyr | UGC | Cys | C | |
UUA | Leu | UCA | Ser | UAA | Stop | UGA | Stop | A | |
UUG | Leu | UCG | Ser | UAG | Stop | UGG | Trp | G | |
C | CUU | Leu | CCU | Pro | CAU | His | CGU | Arg | U |
CUC | Leu | CCC | Pro | CAC | His | CGC | Arg | C | |
CUA | Leu | CCA | Pro | CAA | Gln | CGA | Arg | A | |
CUG | Leu | CCG | Pro | CAG | Gln | CGG | Arg | G | |
A | AUU | Ile | ACU | Thr | AAU | Asn | AGU | Ser | U |
AUC | Ile | ACC | Thr | AAC | Asn | AGC | Ser | C | |
AUA | Ile | ACA | Thr | AAA | Lys | AGA | Arg | A | |
AUG | Met | ACG | Thr | AAG | Lys | AGG | Arg | G | |
G | GUU | Val | GCU | Ala | GAU | Asp | GGU | Gly | U |
GUC | Val | GCC | Ala | GAC | Asp | GGC | Gly | C | |
GUA | Val | GCA | Ala | GAA | Glu | GGA | Gly | A | |
GUG | Val | GCG | Ala | GAG | Glu | GGG | Gly | G |
According to the above table; one amino acid has several triplets, but triplet code is unique for an amino acid.CCA triplet is unique for Proline.ACC triplet is unique for Threonine. UGG triplet is unique for Tryptophan.GUA triplet is unique for Valine.
Therefore, Pro-Thr-Trp-Val-Glu is the amino acid sequence for 5 CCA ACC UGG GUA GAA 3.
(b)
Interpretation:
Amino acid sequence responsible for the 5 AUG UUU UUA UGG UGG 3 mRNA code should be derived.
Concept Introduction:
Genetic code − DNA and RNA transform genetic information of the living cells through triplet code, which is a sequence of three nucleotides on DNA or RNA molecules codes for a specific amino acid in protein synthesis.
Answer to Problem 59P
Met-Phe-Leu-Trp-Trp
Explanation of Solution
Codons are written from 5 prime ends (5) to 3 prime ends (3) of mRNA. There is a unique triplet representation for a particular amino acid. The below-mentioned table represents the relationship between nucleotides and amino acids.
The Genetic Code- Triplets in Messenger RNA
First Base (5' end) | Second Base | Third Base (3' end) | |||||||
U | C | A | G | ||||||
U | UUU | Phe | UCU | Ser | UAU | Tyr | UGU | Cys | U |
UUC | Phe | UCC | Ser | UAC | Tyr | UGC | Cys | C | |
UUA | Leu | UCA | Ser | UAA | Stop | UGA | Stop | A | |
UUG | Leu | UCG | Ser | UAG | Stop | UGG | Trp | G | |
C | CUU | Leu | CCU | Pro | CAU | His | CGU | Arg | U |
CUC | Leu | CCC | Pro | CAC | His | CGC | Arg | C | |
CUA | Leu | CCA | Pro | CAA | Gln | CGA | Arg | A | |
CUG | Leu | CCG | Pro | CAG | Gln | CGG | Arg | G | |
A | AUU | Ile | ACU | Thr | AAU | Asn | AGU | Ser | U |
AUC | Ile | ACC | Thr | AAC | Asn | AGC | Ser | C | |
AUA | Ile | ACA | Thr | AAA | Lys | AGA | Arg | A | |
AUG | Met | ACG | Thr | AAG | Lys | AGG | Arg | G | |
G | GUU | Val | GCU | Ala | GAU | Asp | GGU | Gly | U |
GUC | Val | GCC | Ala | GAC | Asp | GGC | Gly | C | |
GUA | Val | GCA | Ala | GAA | Glu | GGA | Gly | A | |
GUG | Val | GCG | Ala | GAG | Glu | GGG | Gly | G |
According to the above table; one amino acid has several triplets, but triplet code is unique for an amino acid. AUG triplet is unique for Methionine. UUU triplet is unique for Phenylalanine.UUA triplet is unique for Leucine.UGG triplet is unique for Tryptophan.
Therefore, Met-Phe-Leu-Trp-Trp is the amino acid sequence for 5 AUG UUU UUA UGG UGG 3.
(c)
Interpretation:
Amino acid sequence responsible for the 5 GGG UGU AUG CAC CGA UUG 3 mRNA code should be derived.
Concept Introduction:
Genetic code − DNA and RNA transform genetic information of the living cells through triplet code, which is a sequence of three nucleotides on DNA or RNA molecules codes for a specific amino acid in protein synthesis.
Answer to Problem 59P
Val-Asp-Glu-Pro-Glu
Explanation of Solution
Codons are written from 5 prime ends (5) to 3 prime ends (3) of mRNA. There is a unique triplet representation for a particular amino acid. The below-mentioned table represents the relationship between nucleotides and amino acids.
The Genetic Code- Triplets in Messenger RNA
First Base (5' end) | Second Base | Third Base (3' end) | |||||||
U | C | A | G | ||||||
U | UUU | Phe | UCU | Ser | UAU | Tyr | UGU | Cys | U |
UUC | Phe | UCC | Ser | UAC | Tyr | UGC | Cys | C | |
UUA | Leu | UCA | Ser | UAA | Stop | UGA | Stop | A | |
UUG | Leu | UCG | Ser | UAG | Stop | UGG | Trp | G | |
C | CUU | Leu | CCU | Pro | CAU | His | CGU | Arg | U |
CUC | Leu | CCC | Pro | CAC | His | CGC | Arg | C | |
CUA | Leu | CCA | Pro | CAA | Gln | CGA | Arg | A | |
CUG | Leu | CCG | Pro | CAG | Gln | CGG | Arg | G | |
A | AUU | Ile | ACU | Thr | AAU | Asn | AGU | Ser | U |
AUC | Ile | ACC | Thr | AAC | Asn | AGC | Ser | C | |
AUA | Ile | ACA | Thr | AAA | Lys | AGA | Arg | A | |
AUG | Met | ACG | Thr | AAG | Lys | AGG | Arg | G | |
G | GUU | Val | GCU | Ala | GAU | Asp | GGU | Gly | U |
GUC | Val | GCC | Ala | GAC | Asp | GGC | Gly | C | |
GUA | Val | GCA | Ala | GAA | Glu | GGA | Gly | A | |
GUG | Val | GCG | Ala | GAG | Glu | GGG | Gly | G |
According to the above table; one amino acid has several triplets, but triplet code is unique for an amino acid. GUC triplet is unique for Valine. GAC triplet is unique for Aspartic acid. GAA triplet is unique for Glutamic acid. CCG triplet is unique for Proline. CAA triplet is unique for Glutamic acid.
Therefore, Val-Asp-Glu-Pro-Glu is the amino acid sequence for 5 GGG UGU AUG CAC CGA UUG 3.
Want to see more full solutions like this?
Chapter 22 Solutions
Connect One Semester Access Card for General, Organic, & Biological Chemistry
- 1. Write the dissociation reaction then calculate the pH for the following STRONG substances. a. 2.5x103 M HBr b.5.6x10 M NaOHarrow_forward74. A contour map for an atomic orbital of hydrogen is shown below for the xy and xz planes. Identify the type (s, p, d, f, g . . .) of orbital. axis x axis z axis Cooo xy planearrow_forwardA buffer is prepared by adding 0.50 mol of acetic acid (HC2H3O2) and 0.75 mol of sodium acetate (NaC2H3O2) to enough water to form 2.00L solution. (pKa for acetic acid is 4.74) Calculate the pH of the buffer.arrow_forward
- Modify the given carbon skeleton to draw the major product of the following reaction. If a racemic mixture of enantiomers is expected, draw both enantiomers. Note: you can select a structure and use Copy and Paste to save drawing time. HBr کی CH3 کی Edit Drawingarrow_forwardSort the following into the classification for a reaction that is NOT at equilibrium versus a reaction system that has reached equilibrium. Drag the appropriate items to their respective bins. View Available Hint(s) The forward and reverse reactions proceed at the same rate. Chemical equilibrium is a dynamic state. The ratio of products to reactants is not stable. Reset Help The state of chemical equilibrium will remain the same unless reactants or products escape or are introduced into the system. This will disturb the equilibrium. The concentration of products is increasing, and the concentration of reactants is decreasing. The ratio of products to reactants does not change. The rate at which products form from reactants is equal to the rate at which reactants form from products. The concentrations of reactants and products are stable and cease to change. The reaction has reached equilibrium. The rate of the forward reaction is greater than the rate of the reverse reaction. The…arrow_forwardPlace the following characteristics into the box for the correct ion. Note that some of the characteristics will not be placed in either bin. Use your periodic table for assistance. Link to Periodic Table Drag the characteristics to their respective bins. ▸ View Available Hint(s) This anion could form a neutral compound by forming an ionic bond with one Ca²+. Reset Help This ion forms ionic bonds with nonmetals. This ion has a 1- charge. This is a polyatomic ion. The neutral atom from which this ion is formed is a metal. The atom from which this ion is formed gains an electron to become an ion. The atom from which this ion is formed loses an electron to become an ion. This ion has a total of 18 electrons. This ion has a total of 36 electrons. This ion has covalent bonds and a net 2- charge. This ion has a 1+ charge. Potassium ion Bromide ion Sulfate ionarrow_forward
- U Consider the following graph containing line plots for the moles of Product 1 versus time (minutes) and the moles of Product 2 versus time in minutes. Choose all of the key terms/phrases that describe the plots on this graph. Check all that apply. ▸ View Available Hint(s) Slope is zero. More of Product 1 is obtained in 12 minutes. Slope has units of moles per minute. plot of minutes versus moles positive relationship between moles and minutes negative relationship between moles and minutes Slope has units of minutes per moles. More of Product 2 is obtained in 12 minutes. can be described using equation y = mx + b plot of moles versus minutes y-intercept is at (12,10). y-intercept is at the origin. Product Amount (moles) Product 1 B (12,10) Product 2 E 1 Time (minutes) A (12,5)arrow_forwardSolve for x, where M is molar and s is seconds. x = (9.0 × 10³ M−². s¯¹) (0.26 M)³ Enter the answer. Include units. Use the exponent key above the answer box to indicate any exponent on your units. ▸ View Available Hint(s) ΜΑ 0 ? Units Valuearrow_forwardLearning Goal: This question reviews the format for writing an element's written symbol. Recall that written symbols have a particular format. Written symbols use a form like this: 35 Cl 17 In this form the mass number, 35, is a stacked superscript. The atomic number, 17, is a stacked subscript. "CI" is the chemical symbol for the element chlorine. A general way to show this form is: It is also correct to write symbols by leaving off the atomic number, as in the following form: atomic number mass number Symbol 35 Cl or mass number Symbol This is because if you write the element symbol, such as Cl, you know the atomic number is 17 from that symbol. Remember that the atomic number, or number of protons in the nucleus, is what defines the element. Thus, if 17 protons are in the nucleus, the element can only be chlorine. Sometimes you will only see 35 C1, where the atomic number is not written. Watch this video to review the format for written symbols. In the following table each column…arrow_forward
- need help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal…arrow_forwardneed help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal…arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning