
Concept explainers
Batting average: The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
- Construct a frequency histogram for the American League.
- Construct a frequency histogram for the National League.
- Construct a relative frequency distribution for the American League.
- Construct a relative frequency distribution for the National League.
- Construct a relative frequency histogram for the American League.
- Construct a relative frequency histogram for the National League.
- What percentage of American League players had batting averages of 0.300 or more?
- What percentage of National League players had batting averages of 0.300 or more?
- Compare the relative frequency histograms. What is the main difference between the distributions of batting averages in the two leagues?
a.

To construct: A frequency histogram for American League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Definition used: Histograms based on frequency distributions are called frequency histogram.
Solution:
The following frequency distribution presents the batting averages of Major League Baseball players in the American Leaguewho had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency |
0.180-0.199 | 2 |
0.200-0.219 | 7 |
0.220-0.239 | 21 |
0.240-0.259 | 30 |
0.260-0.279 | 26 |
0.280-0.299 | 21 |
0.300-0.319 | 12 |
0.320-0.339 | 5 |
0.340-0.359 | 0 |
The frequency histogram for American League is given by
b.

To construct: A frequency histogram for National League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Definition used: Histograms based on frequency distributions are called frequency histogram.
Solution:
The following frequency distribution presents the batting averages of Major League Baseball players in the American Leaguewho had 300 or more plate appearances during a recent season.
Batting average | National LeagueFrequency |
0.180-0.199 | 2 |
0.200-0.219 | 7 |
0.220-0.239 | 20 |
0.240-0.259 | 29 |
0.260-0.279 | 32 |
0.280-0.299 | 30 |
0.300-0.319 | 17 |
0.320-0.339 | 5 |
0.340-0.359 | 1 |
The frequency histogram for American League is given by
c.

To construct: A relative frequency distribution for American League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Formula used:
Solution:
From the given table,
The sum of all frequency for American League is
The table of relative frequency is given by
Batting average | American LeagueFrequency | American LeagueRelative frequency |
0.180-0.199 | 2 | |
0.200-0.219 | 7 | |
0.220-0.239 | 21 | |
0.240-0.259 | 30 | |
0.260-0.279 | 26 | |
0.280-0.299 | 21 | |
0.300-0.319 | 12 | |
0.320-0.339 | 5 | |
0.340-0.359 | 0 |
The relative frequency for the American League is given by
Batting average | American LeagueRelative frequency |
0.180-0.199 | 0.016 |
0.200-0.219 | 0.056 |
0.220-0.239 | 0.169 |
0.240-0.259 | 0.242 |
0.260-0.279 | 0.210 |
0.280-0.299 | 0.169 |
0.300-0.319 | 0.097 |
0.320-0.339 | 0.040 |
0.340-0.359 | 0.000 |
d.

To construct: A relative frequency distribution for National League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Formula used:
Solution:
From the given table,
The sum of all frequency for National League is
The table of relative frequency is given by
Batting average | National LeagueFrequency | National LeagueRelative frequency |
0.180-0.199 | 2 | |
0.200-0.219 | 7 | |
0.220-0.239 | 20 | |
0.240-0.259 | 29 | |
0.260-0.279 | 32 | |
0.280-0.299 | 30 | |
0.300-0.319 | 17 | |
0.320-0.339 | 5 | |
0.340-0.359 | 1 |
The relative frequency for the NationalLeague is given by
Batting average | National LeagueRelative frequency |
0.180-0.199 | 0.014 |
0.200-0.219 | 0.049 |
0.220-0.239 | 0.140 |
0.240-0.259 | 0.203 |
0.260-0.279 | 0.224 |
0.280-0.299 | 0.210 |
0.300-0.319 | 0.119 |
0.320-0.339 | 0.035 |
0.340-0.359 | 0.007 |
e.

To construct: A relative frequency histogram for American League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Definition used: Histograms based on relative frequency distributions are called relative frequency histogram.
Solution:
Batting average | American LeagueRelative frequency |
0.180-0.199 | 0.016 |
0.200-0.219 | 0.056 |
0.220-0.239 | 0.169 |
0.240-0.259 | 0.242 |
0.260-0.279 | 0.210 |
0.280-0.299 | 0.169 |
0.300-0.319 | 0.097 |
0.320-0.339 | 0.040 |
0.340-0.359 | 0.000 |
The relative frequency histogram for the given data is given by
f.

To construct: A relative frequency histogram for National League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Definition used: Histograms based on relative frequency distributions are called relative frequency histogram.
Solution:
Batting average | NationalLeagueRelative frequency |
0.180-0.199 | 0.014 |
0.200-0.219 | 0.049 |
0.220-0.239 | 0.140 |
0.240-0.259 | 0.203 |
0.260-0.279 | 0.224 |
0.280-0.299 | 0.210 |
0.300-0.319 | 0.119 |
0.320-0.339 | 0.035 |
0.340-0.359 | 0.007 |
The relative frequency histogram for the given data is given by
g.

To find: The percentage of American League players who had batting averages of 0.300 or more.
Answer to Problem 26E
The percentage of American League players who had batting averages of 0.300 or more is 13.7%.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Calculation:
The relative frequency for American League is given by
Batting average | American LeagueRelative frequency |
0.180-0.199 | 0.016 |
0.200-0.219 | 0.056 |
0.220-0.239 | 0.169 |
0.240-0.259 | 0.242 |
0.260-0.279 | 0.210 |
0.280-0.299 | 0.169 |
0.300-0.319 | 0.097 |
0.320-0.339 | 0.040 |
0.340-0.359 | 0.000 |
From the above data, the relative frequencies of batting averages of 0.300 or more are 0.097, 0.040 and 0.000
The sum of all the above relative frequencies is
Then, its percentage is 13.7%
Hence, the percentage of American League players who had batting averages of 0.300 or more is 13.7%.
h.

To find: The percentage of National League players who had batting averages of 0.300 or more.
Answer to Problem 26E
The percentage of National League players who had batting averages of 0.300 or more is 16.1%.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Calculation:
The relative frequency for National League is given by
Batting average | NationalLeagueRelative frequency |
0.180-0.199 | 0.014 |
0.200-0.219 | 0.049 |
0.220-0.239 | 0.140 |
0.240-0.259 | 0.203 |
0.260-0.279 | 0.224 |
0.280-0.299 | 0.210 |
0.300-0.319 | 0.119 |
0.320-0.339 | 0.035 |
0.340-0.359 | 0.007 |
From the above data, the relative frequencies of batting averages of 0.300 or more are 0.119, 0.035 and 0.007.
The sum of all the above relative frequencies is
Then, its percentage is 16.1%
Hence, the percentage of National League players who had batting averages of 0.300 or more is 16.1%.
i.

To find: The percentage of players who had batting averages less than 0.220.
Answer to Problem 26E
The batting averages tend to be a bit higher in the National League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 7 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Solution:
The relative frequency histogram for American League is given by
The relative frequency histogram for the National League is given by
From the above two histograms, we can see that the relative frequency for National league is bit higher than the National League.
Hence, the batting averages tend to be a bit higher in the National League.
Want to see more full solutions like this?
Chapter 2 Solutions
Elementary Statistics 2nd Edition
Additional Math Textbook Solutions
Precalculus: A Unit Circle Approach (3rd Edition)
College Algebra (Collegiate Math)
Intermediate Algebra (13th Edition)
Introductory Statistics
Basic College Mathematics
- Name Harvard University California Institute of Technology Massachusetts Institute of Technology Stanford University Princeton University University of Cambridge University of Oxford University of California, Berkeley Imperial College London Yale University University of California, Los Angeles University of Chicago Johns Hopkins University Cornell University ETH Zurich University of Michigan University of Toronto Columbia University University of Pennsylvania Carnegie Mellon University University of Hong Kong University College London University of Washington Duke University Northwestern University University of Tokyo Georgia Institute of Technology Pohang University of Science and Technology University of California, Santa Barbara University of British Columbia University of North Carolina at Chapel Hill University of California, San Diego University of Illinois at Urbana-Champaign National University of Singapore…arrow_forwardA company found that the daily sales revenue of its flagship product follows a normal distribution with a mean of $4500 and a standard deviation of $450. The company defines a "high-sales day" that is, any day with sales exceeding $4800. please provide a step by step on how to get the answers in excel Q: What percentage of days can the company expect to have "high-sales days" or sales greater than $4800? Q: What is the sales revenue threshold for the bottom 10% of days? (please note that 10% refers to the probability/area under bell curve towards the lower tail of bell curve) Provide answers in the yellow cellsarrow_forwardFind the critical value for a left-tailed test using the F distribution with a 0.025, degrees of freedom in the numerator=12, and degrees of freedom in the denominator = 50. A portion of the table of critical values of the F-distribution is provided. Click the icon to view the partial table of critical values of the F-distribution. What is the critical value? (Round to two decimal places as needed.)arrow_forward
- A retail store manager claims that the average daily sales of the store are $1,500. You aim to test whether the actual average daily sales differ significantly from this claimed value. You can provide your answer by inserting a text box and the answer must include: Null hypothesis, Alternative hypothesis, Show answer (output table/summary table), and Conclusion based on the P value. Showing the calculation is a must. If calculation is missing,so please provide a step by step on the answers Numerical answers in the yellow cellsarrow_forwardShow all workarrow_forwardShow all workarrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill


