Concept explainers
Batting average: The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
- Construct a frequency histogram for the American League.
- Construct a frequency histogram for the National League.
- Construct a relative frequency distribution for the American League.
- Construct a relative frequency distribution for the National League.
- Construct a relative frequency histogram for the American League.
- Construct a relative frequency histogram for the National League.
- What percentage of American League players had batting averages of 0.300 or more?
- What percentage of National League players had batting averages of 0.300 or more?
- Compare the relative frequency histograms. What is the main difference between the distributions of batting averages in the two leagues?
a.
To construct: A frequency histogram for American League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Definition used: Histograms based on frequency distributions are called frequency histogram.
Solution:
The following frequency distribution presents the batting averages of Major League Baseball players in the American Leaguewho had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency |
0.180-0.199 | 2 |
0.200-0.219 | 7 |
0.220-0.239 | 21 |
0.240-0.259 | 30 |
0.260-0.279 | 26 |
0.280-0.299 | 21 |
0.300-0.319 | 12 |
0.320-0.339 | 5 |
0.340-0.359 | 0 |
The frequency histogram for American League is given by
b.
To construct: A frequency histogram for National League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Definition used: Histograms based on frequency distributions are called frequency histogram.
Solution:
The following frequency distribution presents the batting averages of Major League Baseball players in the American Leaguewho had 300 or more plate appearances during a recent season.
Batting average | National LeagueFrequency |
0.180-0.199 | 2 |
0.200-0.219 | 7 |
0.220-0.239 | 20 |
0.240-0.259 | 29 |
0.260-0.279 | 32 |
0.280-0.299 | 30 |
0.300-0.319 | 17 |
0.320-0.339 | 5 |
0.340-0.359 | 1 |
The frequency histogram for American League is given by
c.
To construct: A relative frequency distribution for American League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Formula used:
Solution:
From the given table,
The sum of all frequency for American League is
The table of relative frequency is given by
Batting average | American LeagueFrequency | American LeagueRelative frequency |
0.180-0.199 | 2 | |
0.200-0.219 | 7 | |
0.220-0.239 | 21 | |
0.240-0.259 | 30 | |
0.260-0.279 | 26 | |
0.280-0.299 | 21 | |
0.300-0.319 | 12 | |
0.320-0.339 | 5 | |
0.340-0.359 | 0 |
The relative frequency for the American League is given by
Batting average | American LeagueRelative frequency |
0.180-0.199 | 0.016 |
0.200-0.219 | 0.056 |
0.220-0.239 | 0.169 |
0.240-0.259 | 0.242 |
0.260-0.279 | 0.210 |
0.280-0.299 | 0.169 |
0.300-0.319 | 0.097 |
0.320-0.339 | 0.040 |
0.340-0.359 | 0.000 |
d.
To construct: A relative frequency distribution for National League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Formula used:
Solution:
From the given table,
The sum of all frequency for National League is
The table of relative frequency is given by
Batting average | National LeagueFrequency | National LeagueRelative frequency |
0.180-0.199 | 2 | |
0.200-0.219 | 7 | |
0.220-0.239 | 20 | |
0.240-0.259 | 29 | |
0.260-0.279 | 32 | |
0.280-0.299 | 30 | |
0.300-0.319 | 17 | |
0.320-0.339 | 5 | |
0.340-0.359 | 1 |
The relative frequency for the NationalLeague is given by
Batting average | National LeagueRelative frequency |
0.180-0.199 | 0.014 |
0.200-0.219 | 0.049 |
0.220-0.239 | 0.140 |
0.240-0.259 | 0.203 |
0.260-0.279 | 0.224 |
0.280-0.299 | 0.210 |
0.300-0.319 | 0.119 |
0.320-0.339 | 0.035 |
0.340-0.359 | 0.007 |
e.
To construct: A relative frequency histogram for American League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Definition used: Histograms based on relative frequency distributions are called relative frequency histogram.
Solution:
Batting average | American LeagueRelative frequency |
0.180-0.199 | 0.016 |
0.200-0.219 | 0.056 |
0.220-0.239 | 0.169 |
0.240-0.259 | 0.242 |
0.260-0.279 | 0.210 |
0.280-0.299 | 0.169 |
0.300-0.319 | 0.097 |
0.320-0.339 | 0.040 |
0.340-0.359 | 0.000 |
The relative frequency histogram for the given data is given by
f.
To construct: A relative frequency histogram for National League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Definition used: Histograms based on relative frequency distributions are called relative frequency histogram.
Solution:
Batting average | NationalLeagueRelative frequency |
0.180-0.199 | 0.014 |
0.200-0.219 | 0.049 |
0.220-0.239 | 0.140 |
0.240-0.259 | 0.203 |
0.260-0.279 | 0.224 |
0.280-0.299 | 0.210 |
0.300-0.319 | 0.119 |
0.320-0.339 | 0.035 |
0.340-0.359 | 0.007 |
The relative frequency histogram for the given data is given by
g.
To find: The percentage of American League players who had batting averages of 0.300 or more.
Answer to Problem 26E
The percentage of American League players who had batting averages of 0.300 or more is 13.7%.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Calculation:
The relative frequency for American League is given by
Batting average | American LeagueRelative frequency |
0.180-0.199 | 0.016 |
0.200-0.219 | 0.056 |
0.220-0.239 | 0.169 |
0.240-0.259 | 0.242 |
0.260-0.279 | 0.210 |
0.280-0.299 | 0.169 |
0.300-0.319 | 0.097 |
0.320-0.339 | 0.040 |
0.340-0.359 | 0.000 |
From the above data, the relative frequencies of batting averages of 0.300 or more are 0.097, 0.040 and 0.000
The sum of all the above relative frequencies is
Then, its percentage is 13.7%
Hence, the percentage of American League players who had batting averages of 0.300 or more is 13.7%.
h.
To find: The percentage of National League players who had batting averages of 0.300 or more.
Answer to Problem 26E
The percentage of National League players who had batting averages of 0.300 or more is 16.1%.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 2 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Calculation:
The relative frequency for National League is given by
Batting average | NationalLeagueRelative frequency |
0.180-0.199 | 0.014 |
0.200-0.219 | 0.049 |
0.220-0.239 | 0.140 |
0.240-0.259 | 0.203 |
0.260-0.279 | 0.224 |
0.280-0.299 | 0.210 |
0.300-0.319 | 0.119 |
0.320-0.339 | 0.035 |
0.340-0.359 | 0.007 |
From the above data, the relative frequencies of batting averages of 0.300 or more are 0.119, 0.035 and 0.007.
The sum of all the above relative frequencies is
Then, its percentage is 16.1%
Hence, the percentage of National League players who had batting averages of 0.300 or more is 16.1%.
i.
To find: The percentage of players who had batting averages less than 0.220.
Answer to Problem 26E
The batting averages tend to be a bit higher in the National League.
Explanation of Solution
Given information:The following frequency distribution presents the batting averages of Major League Baseball players in both the American League and the National League who had 300 or more plate appearances during a recent season.
Batting average | American LeagueFrequency | National LeagueFrequency |
0.180-0.199 | 2 | 7 |
0.200-0.219 | 7 | 7 |
0.220-0.239 | 21 | 20 |
0.240-0.259 | 30 | 29 |
0.260-0.279 | 26 | 32 |
0.280-0.299 | 21 | 30 |
0.300-0.319 | 12 | 17 |
0.320-0.339 | 5 | 5 |
0.340-0.359 | 0 | 1 |
Solution:
The relative frequency histogram for American League is given by
The relative frequency histogram for the National League is given by
From the above two histograms, we can see that the relative frequency for National league is bit higher than the National League.
Hence, the batting averages tend to be a bit higher in the National League.
Want to see more full solutions like this?
Chapter 2 Solutions
Elementary Statistics 2nd Edition
Additional Math Textbook Solutions
Precalculus: A Unit Circle Approach (3rd Edition)
College Algebra (Collegiate Math)
Intermediate Algebra (13th Edition)
Introductory Statistics
Basic College Mathematics
- In a crossover trial comparing a new drug to a standard, π denotes the probabilitythat the new one is judged better. It is desired to estimate π and test H0 : π = 0.5against H1 : π = 0.5. In 20 independent observations, the new drug is better eachtime.(a) Find and plot the likelihood function. Give the ML estimate of π (Hint: youmay use the plot function in R)arrow_forwardCan you explain what this analysis means in layman's terms? - We calculated that a target sample size of 3626, which was based on anticipated baseline 90-day mortality of 22% and a noninferiority margin of no more than 4 percentage points, would give the trial 80% power, at a one-sided alpha level of 2.5%, accounting for a maximum of 5% loss to follow-up and for early stopping rules for three interim analyses.-arrow_forwardCan you help me understand this analysis? A 95.7% confidence interval is shown for the intention-to-treat analysis (accounting for alpha spending in interim analyses), and 95% confidence intervals are shown for the other two analyses. The widths of the confidence intervals have not been adjusted for multiplicity. The dashed line indicates the noninferiority margin of 4 percentage points.arrow_forward
- Title: Analyzing Customer Satisfaction for UnileverAs a member of Unilever's Customer Experience Management team, you are responsible forevaluating customer satisfaction levels and monitoring competitive moves. This case studyinvolves analyzing satisfaction data to test two key hypotheses about Unilever's performancerelative to its main competitor, Procter & Gamble (P&G).Unilever’s leadership team has emphasized the importance of customer satisfaction inmaintaining competitive advantage and market leadership. As part of this initiative, yourteam regularly monitors satisfaction scores and benchmarks them against competitors likeP&G.You are tasked with analyzing the provided dataset to answer the following questions:1. Does Unilever’s average customer satisfaction score meet the minimum threshold of2. 75%?Is there no significant difference between Unilever’s overall average satisfaction scoreand P&G’s average satisfaction score?arrow_forwardNeed help answering wuestionarrow_forwardThe following table shows a data set containing information for 25 of the shadow stocks tracked by the American Association of Individual Investors (aaii.com, February 2002). Shadow stocks are common stocks of smaller companies that are not closely followed by Wall Street analysts. Click on the datafile logo to reference the data. DATA file Company DeWolfe Companies Exchange Ticker Symbol Market Cap ($ millions) Price/ Gross Profit Earnings Ratio Margin (%) AMEX DWL 36.4 8.4 36.7 North Coast Energy OTC NCEB 52.5 6.2 59.3 Hansen Natural Corp. OTC HANS 41.1 14.6 44.8 MarineMax, Inc. NYSE HZO 111.5 7.2 23.8 Nanometrics Incorporated OTC NANO 228.6 38.0 53.3 TeamStaff, Inc. OTC TSTF 92.1 33.5 4.1 Environmental Tectonics AMEX ETC 51.1 35.8 35.9 Measurement Specialties AMEX MSS 101.8 26.8 37.6 SEMCO Energy, Inc. NYSE SEN 193.4 18.7 23.6 Party City Corporation OTC PCTY 97.2 15.9 36.4 Embrex, Inc. OTC EMBX 136.5 18.9 59.5 Tech/Ops Sevcon, Inc. AMEX ΤΟ 23.2 20.7 35.7 ARCADIS NV OTC ARCAF 173.4…arrow_forward
- The following table shows a data set containing information for 25 of the shadow stocks tracked by the American Association of Individual Investors (aaii.com, February 2002). Shadow stocks are common stocks of smaller companies that are not closely followed by Wall Street analysts. Click on the datafile logo to reference the data. DATA file Company DeWolfe Companies Exchange AMEX Ticker Symbol Market Cap Price/ Gross Profit Earnings Margin ($ millions) Ratio (%) DWL 36.4 8.4 36.7 North Coast Energy OTC NCEB 52.5 6.2 59.3 Hansen Natural Corp. OTC HANS 41.1 14.6 44.8 MarineMax, Inc. NYSE HZO 111.5 7.2 23.8 Nanometrics Incorporated OTC NANO 228.6 38.0 53.3 TeamStaff, Inc. OTC TSTF 92.1 33.5 4.1 Environmental Tectonics AMEX ETC 51.1 35.8 35.9 Measurement Specialties AMEX MSS 101.8 26.8 37.6 SEMCO Energy, Inc. NYSE SEN 193.4 18.7 23.6 Party City Corporation OTC PCTY 97.2 15.9 36.4 Embrex, Inc. OTC EMBX 136.5 18.9 59.5 Tech/Ops Sevcon, Inc. AMEX ΤΟ 23.2 20.7 35.7 ARCADIS NV OTC ARCAF 173.4…arrow_forwardThe following data show the year to date percent change (YTD % Change) for 30 stock-market indexes from around the word (The Wall Street Journal, August 26, 2013). a. What index has the largest positive YTD % Change? Round your answer to once decimal place. index with a YTD % Change of % b. Using a class width of 5 beginning with -20 and going to 40, develop a frequency distribution for the data. YTD % Change Frequency -20 - -15 -15 - -10 -10 - -5 -5 - 0 0 - 5 5 - 10 10 - 15 15 - 20 20 - 25 30 - 35 c. 1. 2. 3. 4.arrow_forwardThe following data show the year to date percent change (YTD % Change) for 30 stock-market indexes from around the word (The Wall Street Journal, August 26, 2013). Click on the datafile logo to reference the data. DATA file Country Australia Index S&P/ASX200 YTD % Change 10.2 Belgium Bel-20 12.6 Brazil São Paulo Bovespa -14.4 Canada S&P/TSX Comp 2.6 Chile Santiago IPSA -16.3 China Shanghai Composite -9.3 Eurozone EURO Stoxx 10.0 France CAC 40 11.8 Germany DAX 10.6 Hong Kong Hang Seng -3.5 India S&P BSE Sensex -4.7 Israel Tel Aviv 1.3 Italy FTSE MIB 6.6 Japan Nikkei 31.4 Mexico IPC All-Share -6.4 Netherlands AEX 9.3 Singapore Straits Times -2.5 South Korea Kospi -6.4 Spain IBEX 35 6.4 Sweden Switzerland SX All Share 13.8 Swiss Market 17.4 Taiwan Weighted 2.3 U.K. FTSE 100 10.1 U.S. S&P 500 16.6 U.S. DJIA 14.5 U.S. Dow Jones Utility 6.6 U.S. Nasdaq 100 17.4 U.S. Nasdaq Composite 21.1 World DJ Global ex U.S. 4.2 World DJ Global Index 9.9 a. What index has the largest positive YTD %…arrow_forward
- Describe a three step process you choose to determine how many elementary schools there are in the city of 5 million people.arrow_forwardQuiz: Exam 1 (Ch 1-4) z Scores Table-3.pdf x + edu/courses/308627/quizzes/2442507/take/questions/48957332 Canvas Hall It browser 5 Connect Set as default incorrect. • This exam is NOT resumable. Meaning, once you start the exam, you must complete it in its entirety. Any blank questions will be marked as By taking this exam, you agree to adhere to the academic integrity standards, which consist of NOT cheating in any way. To get the highest possible score, you are encouraged to review your notes before taking the exam. You may use your notes during the exam, but note that you should be familiar with the concepts and formulas before taking exam. z Scores Table.pdf Question 3 3 pts Here is a data from a survey asking young children how many hours they spend playing video games. The researchers reported the percent of boys and girls who played no games, less than 1 hour per day, 1-3 hours per day, or greater than 3 hours per day. The most common number of hours per day that boys played is…arrow_forwardWrite a Regression summary explaining significance of mode, explaining regression coefficients, significance of the independent variables, R and R square. Premiums earned Net income Dividends Underwriting Gain/ Loss 30.2 1.6 0.6 0.1 47.2 0.6 0.7 -3.6 92.8 8.4 1.8 -1.5 95.4 7.6 2 -4 100.4 6.3 2.2 -8.1 104.9 6.3 2.4 -10.8 113.2 2.2 2.3 -18.2 130.3 3.0 2.4 -21.4 161.9 13.5 2.3 -12.8 182.5 14.9 2.9 -5.9 193.3 11.7 2.9 -7.6arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill