(a) Interpretation: Whether the hydrogen present as H + , H − or a covalently bonded H in H 2 Se should be determined. Concept introduction: The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH . Transition elements form interstitial hydrides and have no definite stoichiometric formula, AH x . Covalent hydrides are formed by nonmetals and the formula depends on their group in periodic table.
(a) Interpretation: Whether the hydrogen present as H + , H − or a covalently bonded H in H 2 Se should be determined. Concept introduction: The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH . Transition elements form interstitial hydrides and have no definite stoichiometric formula, AH x . Covalent hydrides are formed by nonmetals and the formula depends on their group in periodic table.
Solution Summary: The author explains that the location of each element in the periodic table determines the formula of the hydride it forms.
Definition Definition Elements containing partially filled d-subshell in their ground state configuration. Elements in the d-block of the periodic table receive the last or valence electron in the d-orbital. The groups from IIIB to VIIIB and IB to IIB comprise the d-block elements.
Chapter 22, Problem 22.59SP
Interpretation Introduction
(a)
Interpretation:
Whether the hydrogen present as H+, H− or a covalently bonded H in H2Se should be determined.
Concept introduction:
The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH. Transition elements form interstitial hydrides and have no definite stoichiometric formula, AHx. Covalent hydrides are formed by nonmetals and the formula depends on their group in periodic table.
Interpretation Introduction
(b)
Interpretation:
Whether the hydrogen present as H+, H− or a covalently bonded H in RbH should be determined.
Concept introduction:
The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH. Transition elements form interstitial hydrides and have no definite stoichiometric formula, AHx. Covalent hydrides are formed by nonmetals and the formula depends on their group in periodic table.
Interpretation Introduction
(c)
Interpretation:
Whether the hydrogen present as H+, H− or a covalently bonded H in CaH2 should be determined.
Concept introduction:
The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH. Transition elements form interstitial hydrides and have no definite stoichiometric formula, AHx. Covalent hydrides are formed by nonmetals and the formula depends on their group in periodic table.
Interpretation Introduction
(d)
Interpretation:
Whether the hydrogen present as H+, H− or a covalently bonded H in GeH4 should be determined.
Concept introduction:
The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH. Transition elements form interstitial hydrides and have no definite stoichiometric formula, AHx. Covalent hydrides are formed by nonmetals and the formula depends on their group in periodic table.
5. Propose a Synthesis for the molecule below. You may use any starting materials containing 6
carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not
count towards this total, and the starting material can have whatever non-carbon functional
groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and
III. Your final answer should show each step separately, with intermediates and conditions clearly
drawn.
H3C
CH3
State the name and condensed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.
State the name and condensed formula of the isothiazole obtained by reacting acetylacetone and thiosemicarbazide.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.