Concept explainers
(a)
Interpretation:
The principal organic product expected when isobutyraldehyde reacts with the lithium enolate of acetone followed by
Concept introduction:
The nucleophilic addition reactions of carbonyl compounds are well known due to the polarity of the carbonyl group. The nucleophile attacks on the carbonyl and adds to the carbonyl carbon. The addition of enolate ion on the carbonyl compounds is known as aldol reaction.

Answer to Problem 22.57AP
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of acetone followed by
Explanation of Solution
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of acetone followed by
Figure 1
The enolate ions attack rapidly on the carbonyl group. The enolate ion attacks the carbonyl carbon from the carbon-side and undergoes addition on the carbonyl compound.
Lithium enolate of acetone attacks on the isobutyraldehyde from the carbon side and adds on the molecule. The acidic workup converts the oxide ion generated into alcohol group.
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of acetone followed by
(b)
Interpretation:
The principal organic product expected when isobutyraldehyde reacts with the lithium enolate of ethyl
Concept introduction:
The nucleophilic addition reactions of carbonyl compounds are well known due to the polarity of the carbonyl group. The nucleophile attacks on the carbonyl and adds to the carbonyl carbon. The addition of enolate ion on the carbonyl compounds is known as aldol reaction.

Answer to Problem 22.57AP
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of ethyl
Explanation of Solution
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of ethyl
Figure 2
The enolate ions attack rapidly on the carbonyl group. The enolate ion attacks the carbonyl carbon from the carbon-side and undergoes addition on the carbonyl compound.
Lithium enolate of
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of ethyl
(c)
Interpretation:
The principal organic product expected when isobutyraldehyde reacts with ethyl
Concept introduction:
The nucleophilic addition reactions of carbonyl compounds are well known due to the polarity of the carbonyl group. The nucleophile attacks on the carbonyl and adds to the carbonyl carbon. The addition of enolate ion on the carbonyl compounds is known as aldol reaction.

Answer to Problem 22.57AP
The principal organic product obtained when isobutyraldehyde reacts with ethyl
Explanation of Solution
The principal organic product obtained when isobutyraldehyde reacts with ethyl
Figure 3
The enolate ions attack rapidly on the carbonyl group. The enolate ion attacks the carbonyl carbon from the carbon-side and undergoes addition on the carbonyl compound.
The zinc metal converts the ethyl
The enolate ion generated attacks on the isobutyraldehyde from the carbon side and adds on the molecule. The acidic workup converts the oxide ion generated into alcohol group.
This reaction is a name reaction known as Reformatsky reaction.
The principal organic product obtained when isobutyraldehyde reacts with ethyl
(d)
Interpretation:
The principal organic product expected when isobutyraldehyde reacts with diethyl malonate and a secondary
Concept introduction:
The nucleophilic addition reactions of carbonyl compounds are well known due to the polarity of the carbonyl group. The nucleophile attacks on the carbonyl and adds to the carbonyl carbon. The addition of enolate ion on the carbonyl compounds is known as aldol reaction.

Answer to Problem 22.57AP
The principal organic product obtained when isobutyraldehyde reacts with diethyl malonate and a secondary amine
Explanation of Solution
The principal organic product obtained when isobutyraldehyde reacts with diethyl malonate and a secondary amine
Figure 4
The enolate ions attack rapidly on the carbonyl group. The enolate ion attacks the carbonyl carbon from the carbon-side and undergoes addition on the carbonyl compound.
Malonic ester is converted into the enolate ion by the secondary amine taken as the catalyst. The secondary amine pyridine taken here is basic in nature and takes up the acidic proton of the malonic ester.
The enolate ion generated attacks on the isobutyraldehyde from the carbon side and adds on the molecule. The acidic workup converts the oxide ion generated into alcohol group.
This reaction is a name reaction known as Knoevenagal reaction.
The principal organic product obtained when isobutyraldehyde reacts with diethyl malonate and a secondary amine
(e)
Interpretation:
The principal organic product expected when isobutyraldehyde reacts with ethyl acetoacetate and a secondary amine
Concept introduction:
The nucleophilic addition reactions of carbonyl compounds are well known due to the polarity of the carbonyl group. The nucleophile attacks on the carbonyl and adds to the carbonyl carbon. The addition of enolate ion on the carbonyl compounds is known as aldol reaction.

Answer to Problem 22.57AP
The principal organic product obtained when isobutyraldehyde reacts with ethyl acetoacetate and a secondary amine
Explanation of Solution
The principal organic product obtained when isobutyraldehyde reacts with ethyl acetoacetate and a secondary amine
Figure 5
The enolate ions attack rapidly on the carbonyl group. The enolate ion attacks the carbonyl carbon from the carbon-side and undergoes addition on the carbonyl compound.
Ethyl acetoacetate is converted into the enolate ion by the secondary amine taken as the catalyst. The secondary amine pyridine taken here is basic in nature and takes up the acidic proton of the malonic ester.
The enolate ion generated attacks on the isobutyraldehyde from the carbon side and adds on the molecule. The acidic workup converts the oxide ion generated into alcohol group.
This reaction is a name reaction known as Knoevenagal reaction.
The principal organic product obtained when isobutyraldehyde reacts with ethyl acetoacetate and a secondary amine
Want to see more full solutions like this?
Chapter 22 Solutions
EBK ORGANIC CHEMISTRY STUDY GUIDE AND S
- For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forwardPredict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forward
- For each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forwardAs the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forward
- give example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward
- 3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forwardWhat is the reason of the following(use equations if possible) a.) In MO preperation through diazotization: Addition of sodium nitrite in acidfied solution in order to form diazonium salt b.) in MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at low pH c.) In MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at pH 4.5 d.) Avoiding not cooling down the reaction mixture when preparing the diazonium salt e.) Cbvcarrow_forwardA 0.552-g sample of an unknown acid was dissolved in water to a total volume of 20.0 mL. This sample was titrated with 0.1103 M KOH. The equivalence point occurred at 29.42 mL base added. The pH of the solution at 10.0 mL base added was 3.72. Determine the molar mass of the acid. Determine the Ka of the acid.arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningEBK A SMALL SCALE APPROACH TO ORGANIC LChemistryISBN:9781305446021Author:LampmanPublisher:CENGAGE LEARNING - CONSIGNMENT


