
(a)
Interpretation:
Reason behind the formation of more theoretical plates per meter than thick film has to be explained.
Concept Introduction:
Plate height can be calculated by van Deemter equation as follows:
Here
The term
The term
The term
Number of theoretical plates is calculated as follows:
Here,
(a)

Explanation of Solution
Particle size has a significant impact on the analyte band. For smaller sized particles at very low flow rate the second term in the van Deemter equation is high but other two terms are small so plate height is not high enough. At high flow rate, the third term cannot play significant role as it is proportional to the square of the particle size thus, the value of third term is not high enough. So the summation of all three terms is small. Hence plate height is low.
For lager sized particles at very low flow rate, second term in the van Deemter equation will be predominant, hence at low flow rate plate height is high. And at high flow rate, third term in the equation is predominant as it is proportional to the square of the particle size. So plate height is high.
Hence it can be concluded that in general pate height of thin films is greater than that of thick films because particle size in thin film is smaller than that of thick film.
As number of theoretical plates is inversely proportional to plate height hence number of theoretical plates is higher in case of this film.
(b)
Interpretation:
Mass of stationary phase in each column has to be calculated.
Concept Introduction:
Formula to calculate volume of stationary phase is calculated as follows:
(b)

Explanation of Solution
For narrow bore column mass of stationary phase is
For narrow bore open tubular gas chromatography plate height is calculated as follows:
The volume of stationary phase is calculated as follows:
Mass of stationary phase is calculated as follows:
For wide bore open tubular gas chromatography plate height is calculated as follows:
The volume of stationary phase is calculated as follows:
Mass of stationary phase is calculated as follows:
For narrow bore column mass of stationary phase is
(c)
Interpretation:
Mass of analyte can be injected has to be calculated.
Concept Introduction:
Refer to part (b).
(c)

Answer to Problem 22.4P
For narrow bore column
Explanation of Solution
For narrow bore open tubular gas chromatography plate height is calculated as follows:
The volume of stationary phase is calculated as follows:
Mass of stationary phase is calculated as follows:
Mass of analyte can be injected is calculated as follows:
For wide bore open tubular gas chromatography plate height is calculated as follows:
The volume of stationary phase is calculated as follows:
Mass of stationary phase is calculated as follows:
Mass of analyte can be injected is calculated as follows:
For narrow bore column
Want to see more full solutions like this?
Chapter 22 Solutions
EBK EXPLORING CHEMICAL ANALYSIS
- > Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? esc ? A O O •If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. olo 18 Ar Explanation Check BB Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Accessibilityarrow_forwardName the structurearrow_forward> For each pair of substrates below, choose the one that will react faster in a substitution reaction, assuming that: 1. the rate of substitution doesn't depend on nucleophile concentration and 2. the products are a roughly 50/50 mixture of enantiomers. Substrate A Substrate B Faster Rate X CI (Choose one) (Choose one) CI Br Explanation Check Br (Choose one) C 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy A F10arrow_forward
- How to draw this mechanism for the foloowing reaction in the foto. thank youarrow_forwardPredict the major products of the following organic reaction: Some important notes: CN A? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. No reaction. Explanation Check Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Centerarrow_forwardDraw the major product of the following reaction. Do not draw inorganic byproducts. H3PO4 OHarrow_forward
- Predict the major products of this organic reaction: HBr (1 equiv) Δ ? Some important notes: • Draw the major product, or products, of this reaction in the drawing area below. • You can draw the products in any arrangement you like. • Pay careful attention to the reaction conditions, and only include the major products. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. • Note that there is only 1 equivalent of HBr reactant, so you need not consider the case of multiple additions. Explanation Check X ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacyarrow_forwardFor the structure below, draw the resonance structure that is indicated by the curved arrow(s). Be sure to include formal charges. :ÖH Modify the second structure given to draw the new resonance structure. Include lone pairs and charges in your structure. Use the + and - tools to add/remove charges to an atom, and use the single bond tool to add/remove double bonds.arrow_forwardUsing the table of Reactants and Products provided in the Hints section, provide the major product (with the correct stereochemistry when applicable) for questions below by selecting the letter that corresponds to the exact chemical structures for the possible product. OH conc Hydrochloric acid 40°C Temp A/arrow_forward
- Using arrows to designate the flow of electrons, complete the reaction below and provide a detailed mechanism for the formation of the product OH conc Hydrochloric acid 40°C Temp All chemical structures should be hand drawn on a piece of paper Paragraph BI UAE +varrow_forwarddraw out the following structures plesearrow_forwardDraw everything on a piece of paper outlining the synthesis from acetaldehyde to 2 cyclopentene carboxaldehyde using carbon based reagants with 3 carbons or fewers. Here is the attached image.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





