Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 22, Problem 13P
A freezer has a coefficient of performance of 6.30. It is advertised as using electricity at a rate of 457 kWh/yr. (a) On average, how much energy does it use in a single day? (b) On average, how much energy docs it remove from the refrigerator in a single day? (c) What maximum mass of water at 20.0°C could the freezer freeze in a single day? Note: One kilowatt-hour (kWh) is an amount of energy equal to running a 1-kW appliance for one hour.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A freezer has a coefficient of performance of 6.30. It is advertised as using electricity at a rate of 457 kWh/yr. (a) On average, how much energy does it use in a single day? (b) On average, how much energy does it remove from the refrigerator in a single day? (c) What maximum mass of water at 20.0°C could the freezer freeze in a single day? Note: One kilowatt-hour (kWh) is an amount of energy equal to running a 1-kW appliance for one hour.
A freezer has a coefficient of performance of 6.30. The freezer is advertised as using 457 kW-h/y. (a) On average, how much energy does the freezer use in a single day? (b) On average, how much thermal energy is removed from the freezer each day? (c) What maximum mass of water at 20.0°C could the freezer freeze in a single day? Note: One kilowatt-hour (kW-h) is an amount of energy equal to operating a 1-kW appliance for one hour.
Answer b and c
Chapter 22 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 22.1 - The energy input to an engine is 4.00 times...Ch. 22.2 - The energy entering an electric heater by...Ch. 22.4 - Three engines operate between reservoirs separated...Ch. 22.6 - (a) Suppose you select four cards at random from a...Ch. 22.7 - An ideal gas is taken from an initial temperature...Ch. 22.7 - True or False: The entropy change in an adiabatic...Ch. 22 - Prob. 1OQCh. 22 - Prob. 2OQCh. 22 - Prob. 3OQCh. 22 - Of the following, which is not a statement of the...
Ch. 22 - Prob. 5OQCh. 22 - Prob. 6OQCh. 22 - Prob. 7OQCh. 22 - Prob. 8OQCh. 22 - Prob. 9OQCh. 22 - Prob. 10OQCh. 22 - The arrow OA in the PV diagram shown in Figure...Ch. 22 - The energy exhaust from a certain coal-fired...Ch. 22 - Discuss three different common examples of natural...Ch. 22 - Prob. 3CQCh. 22 - The first law of thermodynamics says you cant...Ch. 22 - Energy is the mistress of the Universe, and...Ch. 22 - (a) Give an example of an irreversible process...Ch. 22 - The device shown in Figure CQ22.7, called a...Ch. 22 - A steam-driven turbine is one major component of...Ch. 22 - Discuss the change in entropy of a gas that...Ch. 22 - Prob. 10CQCh. 22 - Prob. 11CQCh. 22 - (a) If you shake a jar full of jelly beans of...Ch. 22 - What are some factors that affect the efficiency...Ch. 22 - A particular heat engine has a mechanical power...Ch. 22 - The work done by an engine equals one-fourth the...Ch. 22 - A heat engine takes in 360 J of energy from a hot...Ch. 22 - A gun is a heat engine. In particular, it is an...Ch. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Suppose a heat engine is connected to two energy...Ch. 22 - Prob. 8PCh. 22 - During each cycle, a refrigerator ejects 625 kJ of...Ch. 22 - Prob. 10PCh. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - A freezer has a coefficient of performance of...Ch. 22 - Prob. 14PCh. 22 - One of the most efficient heat engines ever built...Ch. 22 - Prob. 16PCh. 22 - Prob. 17PCh. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - Prob. 20PCh. 22 - Prob. 21PCh. 22 - How much work does an ideal Carnot refrigerator...Ch. 22 - Prob. 23PCh. 22 - A power plant operates at a 32.0% efficiency...Ch. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - A heat engine operates in a Carnot cycle between...Ch. 22 - Suppose you build a two-engine device with the...Ch. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - Prob. 39PCh. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - A Styrofoam cup holding 125 g of hot water at 100C...Ch. 22 - Prob. 44PCh. 22 - A 1 500-kg car is moving at 20.0 m/s. The driver...Ch. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - Prob. 48PCh. 22 - Prob. 49PCh. 22 - What change in entropy occurs when a 27.9-g ice...Ch. 22 - Calculate the change in entropy of 250 g of water...Ch. 22 - Prob. 52PCh. 22 - Prob. 53PCh. 22 - Prob. 54PCh. 22 - Prob. 55PCh. 22 - Prob. 56APCh. 22 - Prob. 57APCh. 22 - A steam engine is operated in a cold climate where...Ch. 22 - Prob. 59APCh. 22 - Prob. 60APCh. 22 - Prob. 61APCh. 22 - In 1993, the U.S. government instituted a...Ch. 22 - Prob. 63APCh. 22 - Prob. 64APCh. 22 - Prob. 65APCh. 22 - Prob. 66APCh. 22 - In 1816, Robert Stirling, a Scottish clergyman,...Ch. 22 - Prob. 68APCh. 22 - Prob. 69APCh. 22 - Prob. 70APCh. 22 - Prob. 71APCh. 22 - Prob. 72APCh. 22 - Prob. 73APCh. 22 - A system consisting of n moles of an ideal gas...Ch. 22 - A heat engine operates between two reservoirs at...Ch. 22 - Prob. 76APCh. 22 - Prob. 77APCh. 22 - Prob. 78APCh. 22 - A sample of an ideal gas expands isothermally,...Ch. 22 - Prob. 80APCh. 22 - Prob. 81CP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Order of Magnitude Estimate. Mathematical Insight 1.3 defines order of magnitude estimates, and in the text we ...
The Cosmic Perspective (9th Edition)
The magnitude of the electric field.
Sears And Zemansky's University Physics With Modern Physics
On cold, clear nights horses will sleep under the cover of large trees. How does this help them keep warm?
University Physics Volume 2
2. Which of the following is the best example of the use of a referent? _
a. A red bicycle
b. Big as a dump tru...
Physical Science
You have a summer job at your universitys zoology department, where youll be working with an animal behavior ex...
Essential University Physics: Volume 1 (3rd Edition)
1. Rub your hands together vigorously. What happens? Discuss the energy transfers and transformations that take...
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that the coefficients of performance of refrigerators and heat pumps are related by COPref=COPhp1. Start with the definitions of the COP s and the conservation of energy relationship between Qh, QC, and W.arrow_forwardA freezer has a coefficient of performance of 6.30. It is advertised as using 376 kWh/yr. Note: One kilowatt-hour (kWh) is an amount of energy equal to running a 1-kW appliance for one hour. (a) On average, how much energy does it use in a single day? (b) On average, how much energy does it remove from the refrigerator in a single day? (c) What maximum mass of water at 19.7°C could the freezer freeze in a single day? (The latent heat of fusion of water is 3.33 105 J/kg, and its specific heat is 4186 J/kg · °C.)arrow_forwardHow much energy in jouls does a (5.14x10^1) W toaster use in the morning if it is in operation for a total (4.000x10^0) min? Give your answer to 3 sf. Note: Your answer is assumed to be reduced to the highest power possible. Your Answer: x10 Answerarrow_forward
- A certain coal-fired power plant has a rated power capacity of P = 1350 MW. The output of this plant is W = 0.34QH, where QH is the energy input as heat from the hot reservoir. Part (a) Write an equation for the efficiency of a heat engine in terms of QH and the heat QC exhausted to a low temperature reservoir. Part (b) Which would increase the efficiency more, doubling QH or reducing QC by half? Part (c) Calculate the maximum thermal efficiency of the power plant. Part (d) Calculate the absolute value of the exhausted heat (QC) each second in MJ for the power plant. Part (e) If the power plant operates for a full day at its rated capacity, how much energy QH in MJ is needed? Part (f) If, on average, one ton of coal contains Q = 25 GJ of energy, how many tons nH of coal would the plant need to operate for a day at its rated capacity? Part (g) How many tons nC of this coal is exhausted as wasted heat to QC in a single day?arrow_forwardA heat pump has a coefficient of performance equal to 4.15 and requires a power of 1.61 kW to operate. (a) How much energy does the heat pump add to a home in one hour (in J)? (b) If the heat pump is reversed so that it acts as an air conditioner in the summer, what would be its coefficient of performance?arrow_forwardA heat pump has a coefficient of performance equal to 4.45 and requires a power of 1.65 kW to operate. (a) How much energy does the heat pump add to a home in one hour?(b) If the heat pump is reversed so that it acts as an air conditioner in the summer, what would be its coefficient of performance?arrow_forward
- The power output of a car engine running at 2300 rpmrpm is 300 kW . (a) How much work is done per cycle if the engine's thermal efficiency is 40.0 %?Give your answer in kJ. Win =7.83kJ (b)How much heat is exhausted per cycle if the engine's thermal efficiency is 40.0 %?Give your answer in kJ.arrow_forwardA refrigerator does 26.0 k) of work while moving 117 kJ of thermal energy from inside the refrigerator. (a) Calculate the refrigerator's coefficient of performance. (b) Calculate the energy it transfers to its environment. kJarrow_forwardA freezer has a coefficient of performance of 6.30. The freezer is advertised as using 525 kW-h/y. Note: One kilowatt-hour (kW-h) is an amount of energy equal to operating a 1-kW appliance for one hour. (a) On average, how much energy does the freezer use in a single day? (b) On average, how much thermal energy is removed from the freezer each day? (c) What maximum amount of water at 21.0°C could the freezer freeze in a single day? (The latent heat of fusion of water is 3.33 x 105 J/kg, and the specific heat of water is 4186 J/kg · K.) kgarrow_forward
- A freezer has a coefficient of performance of 6.30. The freezer is advertised as using 433 kW-h/y. Note: One kilowatt-hour (kW-h) is an amount of energy equal to operating a 1-kW appliance for one hour. (a) On average, how much energy does the freezer use in a single day? J (b) On average, how much thermal energy is removed from the freezer each day? J (c) What maximum amount of water at 17.0°C could the freezer freeze in a single day? (The latent heat of fusion of water is 3.33 ✕ 105 J/kg, and the specific heat of water is 4186 J/kg · K.) kgarrow_forwardA heat engine receives heat in the amount of Qh= 525 kJ from a high temperature thermal reservoir and delivers W, net= 360 kJ of work per cycle. Write an expression for the efficiency of the engine. What is this efficiency? n = Write an expression for the amount of energy required to be rejected into the low temperature reservoir. How much energy, in kilojoules, is rejected into the low temperature resevoir?arrow_forwardThe “Energy Guide” label on a washing machine indicates that the washer will use $85 worth of hot water per year if the water is heated by an electric water heater at an electricity rate of $0.113/kWh. If the water is heated from 12 to 55°C, determine how many liters of hot water an average family uses per week. Disregard the electricity consumed by the washer, and take the efficiency of the electric water heater to be 91 percent.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY