(a)
The net work done by the gas.
(a)
Answer to Problem 73AP
The net work done by the gas is
Explanation of Solution
In the figure P22.73, the curve
Write the expression for the work done on the gas during path
Here,
Write the expression for the work done on the gas during path
Here,
Since the process along
Here,
Write the expression for the total work done on the gas.
Conclusion:
From figure,
Substitute
Substitute
Substitute
Therefore, the net work done by the gas is
(b)
The energy added to the gas by heat.
(b)
Answer to Problem 73AP
The energy added to the gas by heat is
Explanation of Solution
In figure
Write the expression for the heat absorbed by the gas in isothermal process.
Here,
Substitute
Write the expression for the specific heat capacity at constant volume of monoatomic gas.
Here,
Write the expression for the specific heat capacity at constant pressure of monoatomic gas.
Here,
Apply ideal gas equation at point
Here,
Rearrange above equation to get
Since
Here,
Substitute
Apply ideal gas equation at point
Here,
Write the expression for the energy absorbed by heat during
Here,
Write the expression for the total energy absorbed by heat.
Here,
Conclusion:
Substitute
Substitute
Since
Substitute
Substitute
Substitute
Therefore, the energy added to the gas by heat is
(c)
The energy exhausted from the gas by heat.
(c)
Answer to Problem 73AP
The energy exhausted from the gas by heat is
Explanation of Solution
Write the expression for the energy exhausted from the gas by heat.
Here,
The specific heat capacity of the gas at constant pressure is
Substitute
Apply ideal gas equation during the isobaric process
Substitute (XVII) in equation (XVI) to get
Conclusion:
Substitute
Then energy exhausted from the gas by heat is,
Therefore, the energy exhausted from the gas by heat is
(d)
The efficiency of the cycle.
(d)
Answer to Problem 73AP
The efficiency of the cycle is
Explanation of Solution
Write the expression for the efficiency of the cycle.
Here,
The total heat exhausted is equal to the sum of the heat liberated through the process described by the curves
Write the expression for the total heat exhausted at hot reservoir.
Substitute (XX) in (XIX) to get
Conclusion:
From part(b),
Substitute
Convert
Therefore the efficiency of the cycle is
(e)
The comparison for the efficiency of the engine with efficiency of Carnot engine operating between same temperature extremes.
(e)
Answer to Problem 73AP
The efficiency of the cycle is much lower than that of a Carnot engine operating between the same temperature extremes.
Explanation of Solution
The temperature of the cold reservoir is equal to temperature at point
From part(a).
Write the expression for the efficiency Carnot engine.
Here,
Conclusion:
Substitute
Efficiency of the cycle is only
Compared to efficiency of Carnot engine , efficiency of the cycle is much lower.
Therefore, the efficiency of the cycle is much lower than that of a Carnot engine operating between the same temperature extremes.
Want to see more full solutions like this?
Chapter 22 Solutions
Physics for Scientists and Engineers With Modern Physics
- Part A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forwardThe 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forward
- The members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forwardpls helparrow_forward
- pls helparrow_forward6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forwardNo chatgpt plsarrow_forward
- What is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forwardՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forwardPart C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning