
(a)
The net work done by the gas.
(a)

Answer to Problem 73AP
The net work done by the gas is
Explanation of Solution
In the figure P22.73, the curve
Write the expression for the work done on the gas during path
Here,
Write the expression for the work done on the gas during path
Here,
Since the process along
Here,
Write the expression for the total work done on the gas.
Conclusion:
From figure,
Substitute
Substitute
Substitute
Therefore, the net work done by the gas is
(b)
The energy added to the gas by heat.
(b)

Answer to Problem 73AP
The energy added to the gas by heat is
Explanation of Solution
In figure
Write the expression for the heat absorbed by the gas in isothermal process.
Here,
Substitute
Write the expression for the specific heat capacity at constant volume of monoatomic gas.
Here,
Write the expression for the specific heat capacity at constant pressure of monoatomic gas.
Here,
Apply ideal gas equation at point
Here,
Rearrange above equation to get
Since
Here,
Substitute
Apply ideal gas equation at point
Here,
Write the expression for the energy absorbed by heat during
Here,
Write the expression for the total energy absorbed by heat.
Here,
Conclusion:
Substitute
Substitute
Since
Substitute
Substitute
Substitute
Therefore, the energy added to the gas by heat is
(c)
The energy exhausted from the gas by heat.
(c)

Answer to Problem 73AP
The energy exhausted from the gas by heat is
Explanation of Solution
Write the expression for the energy exhausted from the gas by heat.
Here,
The specific heat capacity of the gas at constant pressure is
Substitute
Apply ideal gas equation during the isobaric process
Substitute (XVII) in equation (XVI) to get
Conclusion:
Substitute
Then energy exhausted from the gas by heat is,
Therefore, the energy exhausted from the gas by heat is
(d)
The efficiency of the cycle.
(d)

Answer to Problem 73AP
The efficiency of the cycle is
Explanation of Solution
Write the expression for the efficiency of the cycle.
Here,
The total heat exhausted is equal to the sum of the heat liberated through the process described by the curves
Write the expression for the total heat exhausted at hot reservoir.
Substitute (XX) in (XIX) to get
Conclusion:
From part(b),
Substitute
Convert
Therefore the efficiency of the cycle is
(e)
The comparison for the efficiency of the engine with efficiency of Carnot engine operating between same temperature extremes.
(e)

Answer to Problem 73AP
The efficiency of the cycle is much lower than that of a Carnot engine operating between the same temperature extremes.
Explanation of Solution
The temperature of the cold reservoir is equal to temperature at point
From part(a).
Write the expression for the efficiency Carnot engine.
Here,
Conclusion:
Substitute
Efficiency of the cycle is only
Compared to efficiency of Carnot engine , efficiency of the cycle is much lower.
Therefore, the efficiency of the cycle is much lower than that of a Carnot engine operating between the same temperature extremes.
Want to see more full solutions like this?
Chapter 22 Solutions
Physics for Scientists and Engineers With Modern Physics
- Correct answer please. I will upvote.arrow_forwardDefine operational amplifierarrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward
- 9 V 300 Ω www 100 Ω 200 Ω www 400 Ω 500 Ω www 600 Ω ww 700 Ω Figure 1: Circuit symbols for a variety of useful circuit elements Problem 04.07 (17 points). Answer the following questions related to the figure below. A What is the equivalent resistance of the network of resistors in the circuit below? B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance is zero), how much current flows through it in this circuit? C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger or smaller? By how much? D In the ideal battery case, calculate the current through and the voltage across each resistor in the circuit.arrow_forwardhelparrow_forwardIf the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)arrow_forward
- Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Jarrow_forwardA spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m m 0 k wwwwarrow_forwardA block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. Ө m i (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s² Direction O up the incline down the inclinearrow_forward
- (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forwardI need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





